Vitamin D and the Metabolic Syndrome among Women with the Polycystic Ovarian Syndrome

Authors: Jana Figurová 1;  Ingrid Dravecká 1;  Jana Petríková 1;  Martin Javorský 2;  Darina Petrášová 3;  Ivica Lazúrová 1
Authors‘ workplace: I. interná klinika LF UPJŠ a UN L. Pasteura, Košice, primár MUDr. Mikuláš Szakács 1;  IV. interná klinika LF UPJŠ a UN L. Pasteura, Košice, prednosta prof. MUDr. Ivan Tkáč, PhD. 2;  Laboratórium výskumných biomodelov LF UPJŠ, Košice, vedúci pracoviska RNDr. Darina Petrášová, PhD. 3
Published in: Forum Diab 2014; 3(3): 143-148
Category: Topic


The polycystic ovarian syndrome (PCOS) is one of the most frequently occurring endocrinopathies among women of childbearing potential with a 4-18% prevalence. Besides the menstrual cycle disorder with subsequent fertility problems, hyperandrogenaemia and its skin manifestations, we also find multiple metabolic abnormalities among these women, namely a high occurrence of individual manifestations of the metabolic syndrome (MetS) and cardiovascular risk factors. The occurrence of hypovitaminosis D among a population of patients with MetS symptoms, as well as among a group of women with PCOS extends the research on a possible effect of vitamin D on the phenotypic manifestation of PCOS.

Target of the study:
Establish the organism saturation with vitamin D among women with PCOS and in the control cohort (CC), evaluate the relation of hypovitaminosis D to individual symptoms of MetS in PCOS.

25(OH)D, basic anthropometric and metabolic parameters, the overall amount of fat tissue and its distribution across the android and gynoid regions were established for a cohort of 99 women diagnosed with PCOS according to the Rotterdam criteria and for 66 women in the control cohort.

We have not confirmed a significant difference in the average serum levels of 25(OH)D between PCOS and CC (24.79 ± 10.77 vs 25.07 ± 10.14 ng/ml, p = 0.868). The patients with PCOS meeting the MetS criteria had significantly lower values of 25(OH)D as compared with PCOS without MetS (20.6 ± 8.3 vs 25.9 ± 11.3 ng/ml, p = 0.049). PCOS patients with hypovitaminosis had higher levels of triglycerides of limit significance (1.44 ± 0.93 vs 1.03 ± 0.46, p = 0.051) and a trend toward a higher HOMA-index (median [percentile]: 2.24 [1.38; 3.51] vs 1.85 [1.04; 3.68], p = 0.467) as compared with the women manifesting PCOS with normal vitamin D saturation. 25(OH)D correlated positively with HDL-cholesterol (r = 0.159, p = 0.043) among all individuals.

Low levels of 25(OH)D are associated with individual elements of the MetS in the PCOS, though not with the PCOS itself.

Key words:
insulin resistance – metabolic syndrome – polycystic ovarian syndrome – vitamin D


1. March WA, Moore VM, Willson KJ et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 2010; 25(2): 544–551.

2. Alexander CJ, Tangchitnob EP, Lepor NE. Polycystic ovary syndrome: a major unrecognized cardiovascular risk factor in women. Rev Obstet Gynecol 2009; 2(4): 232–239.

3. Azziz R, Woods KS, Reyna R et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004; 89(6): 2745–2749.

4. Chiu KC, Chu A, Go VLW et al. Hypovitaminosis D is associated with insulin resistance and β-cell dysfunction. Am J Clin Nutr 2004; 79(5): 820–825.

5. Thys-Jacobs S, Donovan D, Papadopoulos A et al. Vitamin D and calcium dysregulation in the polycystic ovarian syndrome. Steroids 1999; 64(6): 430–435.

6. Hahn S, Haselhorst U, Tan S et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes 2006; 114(10): 577–583.

7. Selimoglu H, Duran C, Kiyici S et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Invest 2010; 33(4): 234–238.

8. Mahmoudi T. Genetic variation in the vitamin D receptor and polycystic ovary syndrome risk. Fertil Steril 2009; 92(4): 1381–1383.

9. Fauser BC, Tarlatzis BC, Rebar RW et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 2012; 97(1):28–38.

10. National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment panel III). Circulation 2002; 106(25): 3143–3421.

11. Bouillon R, Van Schoor NM, Gielen E et al. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. Clin Endocrinol Metab 2013; 98(8):1283–304.

12. Li HWR, Brereton RE, Anderson RA et al. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism 2011; 60(10): 1475–81.

13. Panidis D, Balaris C, Farmakiotis D et al. Serum parathyroid hormone concentrations are increased in women with polycystic ovary syndrome. Clin Chem 2005; 51(9): 1691–1697.

14. Wehr E, Trummer O, Giuliani A et al. Vitamin D associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic ovary syndrome. Eur J Endocrinol 2011; 164(5): 741–749.

15. Lips, P. Worldwide status of vitamin D nutrition. J Steroid Bioch Mol Biol 2010; 121(1–2): 297–300.

Diabetology Endocrinology Internal medicine
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account