#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gut microbiome in children and risk of developing type 1 diabetes mellitus


Authors: Uboš Ambro 1;  Anna Kamlárová 1;  René Link 1;  Ivana Lukáčová 1;  Alojz Bo 1;  Oliver Rácz 2
Authors‘ workplace: Ústav experimentálnej medicíny LF UPJŠ v Košiciach 1;  Ústav patologickej fyziológie LF UPJŠ v Košiciach 2
Published in: Diab Obez 2019; 19(38): 75-83
Category:

Overview

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that is caused by exogenous and endogenous factors. The development of T1DM is largely related to the genes of the MHC system, which are responsible for the recognition of self and foreign antigens. The incidence of T1DM increases every year and environmental factors affecting the immune system are thought to be responsible for this trend. However the current knowledge of the factors that pose an increased risk of T1DM manifestation is still insufficient to explain the pathogenesis of the disease satisfactorily. In addition, it is known that most people with high-risk haplotypes will eventually never become ill with T1DM. Recent studies suggest that human intestinal microbiome may also play an important role in the development of T1DM. It has been proven that reduction of intestinal microbial diversity occurs in prediabetic children. It is also believed that dietary modulation of intestinal microbiome in early childhood may affect the later development of the disease.

Keywords:

autoimmune disease – intestinal microbiome – nutrition – type 1 diabetes mellitus


Sources
  1. Campbell AW. Autoimmunity and the Gut. Autoimmune Dis. 2014;2014:152428. Dostupné z DOI: <http://dx.doi.org/10.1155/2014/152428>.
  2. Harjutsalo V, Sund R, Knip M et al. Incidence of Type 1 Diabetes in Finland. JAMA 2013; 310(4):427–428. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2013.8399>.
  3. Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine 2019; 46: 512–521. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ebiom.2019.06.031>.
  4. Yatsunenko T, Rey FE, Manary MJ et al. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222–227. Dostupné z DOI: <http://dx.doi.org/10.1038/nature11053>.
  5. Yassour M, Vatanen T, Siljander H et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016; 8(343):343ra81. Dostupné z DOI: <http://dx.doi.org/10.1126/scitranslmed.aad0917>.
  6. Belkaid Y, Hand TW. Role of the Microbiota in Immunity and Inflammation. Cell 2014; 157(1): 121–141. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cell.2014.03.011>.
  7. Redondo MJ, Jeffrey J, Fain PR et al. Concordance for Islet Autoimmunity among Monozygotic Twins. N Engl J Med 2008; 359(26): 2849–2850. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMc0805398>.
  8. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet 2016; 387(10035): 2331–2339. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(16)30582–7>.
  9. Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res 2001; 56: 69–89.
  10. Diaz-Valencia PA, Bougnères P, Valleron AJ. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health 2015; 15: 255. Dostupné z DOI: <http://dx.doi.org/10.1186/s12889–015–1591-y>.
  11. Noble JA. Immunogenetics of type 1 diabetes: A comprehensive review. J Autoimmun 2015; 64: 101–112. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jaut.2015.07.014>.
  12. [TEDDY Study Group]. The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 2007; 8(5): 286–298. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1399–5448.2007.00269.x>.
  13. Oram RA, Patel K, Hill A et al. A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults. Diabetes Care 2016; 39(3): 337–344. Dostupné z DOI: <http://dx.doi.org/10.2337/dc15–1111>.
  14. Winkler C, Krumsiek J, Buettner F et al. Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. Diabetologia 2014; 57(12): 2521–2529. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–014–3362–1>.
  15. Ziegler AG, Danne T, Dunger DB et al. Primary prevention of beta-cell autoimmunity and type 1 diabetes – The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) perspectives. Mol Metab 2016; 5(4): 255–262. Dostupné z DOI: <http://dx.doi.org/10.1016/j.molmet.2016.02.003>.
  16. Bonifacio E, Beyerlein A, Hippich M et al. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Med 2018; 15(4): e1002548. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pmed.1002548>.
  17. Maahs DM, West NA, Lawrence JM et al. Epidemiology of Type 1 Diabetes. Endocrinol Metab Clin North Am 2010; 39(3): 481–497. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ecl.2010.05.011>.
  18. Mayer-Davis EJ, Lawrence JM, Dabelea D et al. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N Engl J Med 2017; 376(15): 1419–1429. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1610187>.
  19. Rogers MAM, Kim C, Banerjee T et al. Fluctuations in the incidence of type 1 diabetes in the United States from 2001 to 2015: a longitudinal study. BMC Med 2017; 15(1): 199. Dostupné z DOI: <http://dx.doi.org/10.1186/s12916–017–0958–6>.
  20. Patterson CC, Dahlquist GG, Gyürüs E et al. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 2009; 373(9680): 2027–2033. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(09)60568–7>.
  21. Podar T, Solntsev A, Karvonen M et al. Increasing incidence of childhood-onset Type I diabetes in 3 Baltic countries and Finland 1983–1998. Diabetologia 2001; 44(Suppl 3): B17–20. Dostupné z DOI: <http://dx.doi.org/10.1007/pl00002947>.
  22. Dabelea D. The accelerating epidemic of childhood diabetes. Lancet 2009; 373(9680): 1999–2000. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(09)60874–6>.
  23. Chobot A, Polanska J, Brandt A et al. Updated 24-year trend of Type 1 diabetes incidence in children in Poland reveals a sinusoidal pattern and sustained increase. Diabet Med 2017; 34(9): 1252–1258. Dostupné z DOI: <http://dx.doi.org/10.1111/dme.13345>.
  24. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet 2016; 387(10035): 2340–2348. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(16)30507–4>.
  25. Hull CM, Peakman M, Tree TIM. Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 2017; 60(10): 1839–1850. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–017–4377–1>.
  26. Greenbaum CJ, Anderson AM, Dolan LM et al. Preservation of -Cell Function in Autoantibody-Positive Youth With Diabetes. Diabetes Care 2009; 32(10): 1839–1844. Dostupné z DOI: <http://dx.doi.org/10.2337/dc08–2326>.
  27. Keenan HA, Sun JK, Levine J et al. Residual Insulin Production and Pancreatic -Cell Turnover After 50 Years of Diabetes: Joslin Medalist Study. Diabetes 2010; 59(11): 2846–2853. Dostupné z DOI: <http://dx.doi.org/10.2337/db10–0676>.
  28. Lam CJ, Jacobson DR, Rankin MM et al. β Cells Persist in T1D Pancreata Without Evidence of Ongoing β-Cell Turnover or Neogenesis. J Clin Endocrinol Metab 2017; 102(8): 2647–2659. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2016–3806>.
  29. Zenz S, Mader JK, Regittnig W et al. Impact of C-Peptide Status on the Response of Glucagon and Endogenous Glucose Production to Induced Hypoglycemia in T1DM. J Clin Endocrinol Metab 2018; 103(4): 1408–1417. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2017–01836>.
  30. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet 2018; 391(10138): 2449–2462. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(18)31320–5>.
  31. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383(9911): 69–82. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(13)60591–7>.
  32. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986; 314( 21): 1360–1368. Dostupné z DOI: <http://10.1056/NEJM198605223142106>.
  33. Krogvold L, Edwin B, Buanes T et al. Detection of a Low-Grade Enteroviral Infection in the Islets of Langerhans of Living Patients Newly Diagnosed With Type 1 Diabetes. Diabetes 2015; 64(5): 1682–1687. Dostupné z DOI: <http://dx.doi.org/10.2337/db14–1370>.
  34. Ohkusa T, Okayasu I, Ogihara T et al. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut 2003; 52(1): 79–83. Dostupné z DOI: <http://dx.doi.org/10.1136/gut.52.1.79>.
  35. Zheng P, Li Z, Zhou Z. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev 2018; 34(7): e3043. Dostupné z DOI: <http://dx.doi.org/10.1002/dmrr.3043>.
  36. Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol 2014; 49(6): 681–9. Dostupné z DOI: <http://dx.doi.org/10.3109/00365521.2014.898326>.
  37. Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 1998; 42(1):2–7. Dostupné z DOI: <http://dx.doi.org/10.1136/gut.42.1.2>.
  38. Qin J, Li R, Raes J, Arumugam M et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59–65. Dostupné z DOI: <http://dx.doi.org/10.1038/nature08821>.
  39. Sommer F, Bäckhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol 2013; 11(4): 227–238. Dostupné z DOI: <http://dx.doi.org/10.1038/nrmicro2974>.
  40. Bibbò S, Dore MP, Pes GM et al. Is there a role for gut microbiota in type 1 diabetes pathogenesis? Ann Med 2017; 49(1): 11–22. Dostupné z DOI: <http://dx.doi.org/10.1080/07853890.2016.1222449>.
  41. Goodrich JK, Waters JL, Poole AC et al. Human Genetics Shape the Gut Microbiome. Cell 2014; 159(4): 789–799. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cell.2014.09.053>.
  42. Van den Abbeele P, Belzer C, Goossens M et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 2013; 7(5): 949–961. Dostupné z DOI: <http://dx.doi.org/10.1038/ismej.2012.158>.
  43. de Oliveira GLV1, Leite AZ, Higuchi BS et al. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 2017; 152(1): 1–12. Dostupné z DOI: <http://dx.doi.org/10.1111/imm.12765>.
  44. Grölund, M.-M. et al. Fecal Microflora in Healthy Infants Born by Different Methods of Delivery: Permanent Changes in Intestinal Flora After Cesarean Delivery. J Pediatr Gastroenterol Nutr 1999; 28(1): 19–25. Dostupné z DOI: <http://dx.doi.org/10.1097/00005176–199901000–00007>.
  45. Jakobsson HE, Abrahamsson TR, Jenmalm MC et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 2014; 63(4): 559–66. Dostupné z DOI: <http://dx.doi.org/10.1136/gutjnl-2012–303249>.
  46. Dominguez-Bello MG, Costello EK, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010; 107(26): 11971–11975. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.1002601107>.
  47. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 2016; 12(3): 154–167. Dostupné z DOI: <http://dx.doi.org/10.1038/nrendo.2015.218>.
  48. Dominguez-Bello MG, Blaser MJ, Ley RE et al. Development of the Human Gastrointestinal Microbiota and Insights From High-Throughput Sequencing. Gastroenterology 2011; 140(6): 1713–1719. Dostupné z DOI: <http://dx.doi.org/10.1053/j.gastro.2011.02.011>.
  49. Dogra S, Sakwinska O, Soh SE et al. Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration and Are Associated with Subsequent Adiposity. MBio 2015; 6(1). pii: e02419–14. Dostupné z DOI: http://dx.doi.org/<10.1128/mBio.02419–14>.
  50. Penders J, Thijs C, Vink C et al. Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy. Pediatrics 2006; 118(2): 511–521. Dostupné z DOI: http://dx.doi.org/<10.1542/peds.2005–2824>.
  51. Stewart CJ, Ajami NJ, O‘Brien JL et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018; 562(7728): 583–588. Dostupné z DOI: <http://dx.doi.org/10.1038/s41586–018–0617-x>.
  52. Scott FW, Pound LD, Patrick C et al. Where genes meet environment—integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179: 183–198. Dostupné z DOI: <http://dx.doi.org/10.1016/j.trsl.2016.09.001>.
  53. Montoya-Williams D, Lemas DJ, Spiryda L et al. The Neonatal Microbiome and Its Partial Role in Mediating the Association between Birth by Cesarean Section and Adverse Pediatric Outcomes. Neonatology 2018; 114(2): 103–111. Dostupné z DOI: <http://dx.doi.org/10.1159/000487102>.
  54. de Goffau MC, Luopajarvi K, Knip M et al. Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without. Diabetes 2013; 62(4): 1238–1244. Dostupné z DOI: <http://dx.doi.org/https://doi.org/10.2337/db12–0526>.
  55. Brown CT, Davis-Richardson AG, Giongo A et al. Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes. PLoS One 2011; 6(10): e25792. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0025792>.
  56. Kostic AD, Gevers D, Siljander H et al. The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes. Cell Host Microbe 2015; 17(2): 260–273. Dostupné z DOI: <http://dx.doi.org/10.1016/j.chom.2015.01.001>.
  57. de Goffau MC, Fuentes S, van den Bogert B et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014; 57(8): 1569–1577. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–014–3274–0>.
  58. Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B et al. Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study. Diabetes Care 2018; 41(11): 2385–2395. Dostupné z DOI: <http://dx.doi.org/10.2337/dc18–0253>.
  59. Chamaillard M, Cesaro A, Lober PE et al. Decoding Norovirus Infection in Crohnʼs Disease. Inflamm Bowel Dis 2014; 20(4): 767–770. Dostupné z DOI: <http://dx.doi.org/10.1097/01.MIB.0000440613.83703.4a>.
  60. Alkanani AK, Hara N, Gottlieb PA et al. Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes 2015; 64(10): 3510–3520. Dostupné z DOI: <http://dx.doi.org/10.2337/db14–1847>.
  61. Mejía-León ME, Petrosino JF, Ajami NJ et al. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 2014; 4: 3814. Dostupné z DOI: <http://dx.doi.org/10.1038/srep03814>.
  62. Higuchi BS, Rodrigues N, Gonzaga MI et al. Intestinal Dysbiosis in Autoimmune Diabetes Is Correlated With Poor Glycemic Control and Increased Interleukin-6: A Pilot Study. Front Immunol 2018; 9: 1689. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2018.01689>.
  63. Qi CJ, Zhang Q, Yu M et al. Imbalance of Fecal Microbiota at Newly Diagnosed Type 1 Diabetes in Chinese Children. Chin Med J (Engl) 2016; 129(11): 1298–1304. Dostupné z DOI: <http://dx.doi.org/10.4103/0366–6999.182841>.
  64. Soyucen E, Gulcan A, Aktuglu-Zeybek AC et al. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int 2014; 56(3): 336–343. Dostupné z DOI: <http://dx.doi.org/10.1111/ped.12243>.
  65. Dethlefsen L, Huse S, Sogin ML et al. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol 2008; 6(11): e280. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pbio.0060280>.
  66. Jernberg C, Löfmark S, Edlund C et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1(1): 56–66. Dostupné z DOI: <http://dx.doi.org/10.1038/ismej.2007.3>. Erratum in ISME J 2013; 7(2): 456.
  67. Jakobsson HE, Jernberg C, Andersson AF et al. Short-Term Antibiotic Treatment Has Differing Long-Term Impacts on the Human Throat and Gut Microbiome. PLoS One 2010; 5(3): e9836. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0009836>.
  68. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science 2016; 352(6285): 544–545. Dostupné z DOI: <http://dx.doi.org/10.1126/science.aad9358>.
  69. Keeney KM, Yurist-Doutsch S, Arrieta MC et al. Effects of Antibiotics on Human Microbiota and Subsequent Disease. Annu Rev Microbiol 2014; 68: 217–235. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev-micro-091313–103456>.
  70. Boursi B, Mamtani R, Haynes K et al. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol 2015; 172(6): 639–648. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-14–1163>.
  71. Clausen TD, Bergholt T, Bouaziz O et al. Broad-Spectrum Antibiotic Treatment and Subsequent Childhood Type 1 Diabetes: A Nationwide Danish Cohort Study. PLoS One 2016; 11(8): e0161654. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0161654>.
  72. Bonifacio E, Warncke K, Winkler C et al. Cesarean Section and Interferon-Induced Helicase Gene Polymorphisms Combine to Increase Childhood Type 1 Diabetes Risk. Diabetes 2011; 60(12): 3300–3306. Dostupné z DOI: <http://dx.doi.org/10.2337/db11–0729>.
  73. Lee HY, Lu CL, Chen HF et al. Perinatal and childhood risk factors for early-onset type 1 diabetes: a population-based case-control study in Taiwan. Eur J Public Health 2015; 25(6): 1024–1029. Dostupné z DOI: <http://dx.doi.org/10.1093/eurpub/ckv059>.
  74. Clausen TD, Bergholt T, Eriksson F et al. Prelabor Cesarean Section and Risk of Childhood Type 1 Diabetes. Epidemiology 2016; 27(4): 547–555. Dostupné z DOI: <http://dx.doi.org/10.1097/EDE.0000000000000488>.
  75. Betrán AP, Ye J, Moller AB et al. The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990–2014. PLoS One 2016; 11(2): e0148343. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0148343>.
  76. Mosca F, Giannì ML. Human milk: composition and health benefits. La Pediatr. Pediatr Med Chir 2017; 3(2): 155. <http://dx.doi.org/10.4081/pmc.2017.155>.
  77. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 2011; 17(6): 478–482. Dostupné z DOI: <http://dx.doi.org/10.1016/j.anaerobe.2011.03.009>.
  78. Aakko J, Kumar H, Rautava S et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef Microbes 2017; 8(4): 563–567. Dostupné z DOI: <http://dx.doi.org/10.3920/BM2016.0185>.
  79. Gabrielli O, Zampini L, Galeazzi T et al. Preterm Milk Oligosaccharides During the First Month of Lactation. Pediatrics 2011; 128(6): e1520–1531. Dostupné z DOI: <http://dx.doi.org/10.1542/peds.2011–1206>.
  80. Bach JF, Chatenoud L. The Hygiene Hypothesis: An Explanation for the Increased Frequency of Insulin-Dependent Diabetes. Cold Spring Harb Perspect Med 2012; 2(2): a007799. Dostupné z DOI: <http://dx.doi.org/10.1101/cshperspect.a007799>.
  81. Itoh A, Ridgway WM. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes. Immunotargets Ther 2017; 6: 31–38. Dostupné z DOI: <http://dx.doi.org/10.2147/ITT.S117264>.
Labels
Diabetology Obesitology

Article was published in

Diabetes a obezita

Issue 38

2019 Issue 38

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#