#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The value of immunohistochemical methods in diagnosing endometrial carcinoma


Authors: Pavel Dundr 1;  Kristýna Němejcová 1;  Michaela Bártů 1;  Rosalie Jana Bennett 1;  Helena Skálová 1;  Pavol Janega 2,3;  Ivana Stružinská 1
Authors‘ workplace: Ústav patologie 1. LF UK a VFN v Praze 1;  Ústav patologickej anatómie, Lekárska fakulta, Univerzita Komenského v Bratislave 2;  Medirex Group Academy, Trnava, n. o. 3
Published in: Čes.-slov. Patol., 57, 2021, No. 2, p. 73-85
Category: Reviews Article

Overview

The goal of this manuscript is to provide an overview of the significance of immunohistochemical methods in diagnosing endometrial carcinoma. The main points discussed include: the use of immunohistochemistry in the differential diagnosis of the main histological types of endometrial carcinoma, the difference between primary serous endometrial carcinoma and the involvement with high grade serous carcinoma of another primary source, the diagnosis of undifferentiated/dedifferentiated endometrial carcinoma, and diagnosing tumours with neuroendocrine differentiation. The role of p53 expression evaluation is also emphasized as a special area of interest, not only in the context of differential diagnosis, but also from the point of view of the prognosis and prediction of endometrial carcinoma as an ancillary marker for subtypization of these tumours.

Keywords:

Endometrial carcinoma – endometrioid carcinoma – serous carcinoma – clear cell carcinoma – undifferentiated / dedifferentiated carcinoma – immunohistochemistry


Sources

1.      Brinton LA, Felix AS, Mcmeekin DS, et al. Etiologic heterogeneity in endometrial cancer: Evidence from a gynecologic oncology group trial. Gynecol Oncol 2013; 129(2): 277-284.

2.      Voss MA, Ganesan R, Ludeman L, et al. Should grade 3 endometrioid endometrial carcinoma be considered a type 2 cancer-a clinical and pathological evaluation. Gynecol Oncol 2012; 124(1): 15-20.

3.      Zannoni GF, Vellone VG, Arena V, et al. Does high-grade endometrioid carcinoma (grade 3 figo) belong to type i or type ii endometrial cancer? A clinical-pathological and immunohistochemical study. Virchows Arch 2010; 457(1): 27-34.

4.      Cancer Genome Atlas Research N, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013; 497(7447): 67-73.

5.      Meng B, Hoang LN, Mcintyre JB, et al. Pole exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol 2014; 134(1): 15-19.

6.      Haruma T, Nagasaka T, Nakamura K, et al. Clinical impact of endometrial cancer stratified by genetic mutational profiles, pole mutation, and microsatellite instability. PLoS One 2018; 13(4): e0195655.

7.      Van Gool IC, Stelloo E, Nout RA, et al. Prognostic significance of l1cam expression and its association with mutant p53 expression in high-risk endometrial cancer. Mod Pathol 2016; 29(2): 174-181.

8.      Bosse T, Peters EE, Creutzberg CL, et al. Substantial lymph-vascular space invasion (lvsi) is a significant risk factor for recurrence in endometrial cancer--a pooled analysis of portec 1 and 2 trials. Eur J Cancer 2015; 51(13): 1742-1750.

9.      Al-Hussaini M, Stockman A, Foster H, Mccluggage WG. Wt-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology 2004; 44(2): 109-115.

10.    Goldstein NS, Uzieblo A. Wt1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas. Am J Clin Pathol 2002; 117(4): 541-545.

11.    Zhang Y, Garcia-Buitrago MT, Koru-Sengul T, Schuman S, Ganjei-Azar P. An immunohistochemical panel to distinguish ovarian from uterine serous papillary carcinomas. Int J Gynecol Pathol 2013; 32(5): 476-481.

12.    Zaidi A, Gupta P, Gupta N, et al. Role of immunohistochemistry to distinguish grade 3 endometrioid carcinoma and uterine serous carcinoma. Appl Immunohistochem Mol Morphol 2020; 28(1): 42-48.

13.    Visser NCM, Van Der Putten LJM, Van Egerschot A, et al. Addition of imp3 to l1cam for discrimination between low- and high-grade endometrial carcinomas: A european network for individualised treatment of endometrial cancer collaboration study. Hum Pathol 2019; 89: 90-98.

14.    Alkushi A, Kobel M, Kalloger SE, Gilks CB. High-grade endometrial carcinoma: Serous and grade 3 endometrioid carcinomas have different immunophenotypes and outcomes. Int J Gynecol Pathol 2010; 29(4): 343-350.

15.    Mhawech-Fauceglia P, Herrmann FR, Rai H, et al. Imp3 distinguishes uterine serous carcinoma from endometrial endometrioid adenocarcinoma. Am J Clin Pathol 2010; 133(6): 899-908.

16.    Mhawech-Fauceglia P, Wang D, Samrao D, et al. Trefoil factor family 3 (tff3) expression and its interaction with estrogen receptor (er) in endometrial adenocarcinoma. Gynecol Oncol 2013; 130(1): 174-180.

17.    Zheng W, Yi X, Fadare O, et al. The oncofetal protein imp3: A novel biomarker for endometrial serous carcinoma. Am J Surg Pathol 2008; 32(2): 304-315.

18.    Singh N, Piskorz AM, Bosse T, et al. P53 immunohistochemistry is an accurate surrogate for tp53 mutational analysis in endometrial carcinoma biopsies. J Pathol 2020; 250(3): 336-345.

19.    Yano M, Ito K, Yabuno A, et al. Impact of tp53 immunohistochemistry on the histological grading system for endometrial endometrioid carcinoma. Mod Pathol 2019; 32(7): 1023-1031.

20.    Allo G, Bernardini MQ, Wu RC, et al. Arid1a loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol 2014; 27(2): 255-261.

21.    Hariri N, Qarmali M, Fadare O. Endometrial serous carcinoma with clear-cell change: Frequency and immunohistochemical analysis. Int J Surg Pathol 2018; 26(2): 126-134.

22.    Fadare O, Parkash V, Gwin K, et al. Utility of alpha-methylacyl-coenzyme-a racemase (p504s) immunohistochemistry in distinguishing endometrial clear cell carcinomas from serous and endometrioid carcinomas. Hum Pathol 2013; 44(12): 2814-2821.

23.    Fadare O, Zheng W, Crispens MA, et al. Morphologic and other clinicopathologic features of endometrial clear cell carcinoma: A comprehensive analysis of 50 rigorously classified cases. Am J Cancer Res 2013; 3(1): 70-95.

24.    Fadare O, Liang SX. Diagnostic utility of hepatocyte nuclear factor 1-beta immunoreactivity in endometrial carcinomas: Lack of specificity for endometrial clear cell carcinoma. Appl Immunohistochem Mol Morphol 2012; 20(6): 580-587.

25.    Fadare O, James S, Desouki MM, Khabele D. Coordinate patterns of estrogen receptor, progesterone receptor, and wilms tumor 1 expression in the histopathologic distinction of ovarian from endometrial serous adenocarcinomas. Ann Diagn Pathol 2013; 17(5): 430-433.

26.    Fadare O, Gwin K, Desouki MM, et al. The clinicopathologic significance of p53 and baf-250a (arid1a) expression in clear cell carcinoma of the endometrium. Mod Pathol 2013; 26(8): 1101-1110.

27.    Nemejcova K, Ticha I, Kleiblova P, et al. Expression, epigenetic and genetic changes of hnf1b in endometrial lesions. Pathol Oncol Res 2016; 22(3): 523-530.

28.    Wiegand KC, Lee AF, Al-Agha OM, et al. Loss of baf250a (arid1a) is frequent in high-grade endometrial carcinomas. J Pathol 2011; 224(3): 328-333.

29.    Fadare O, Renshaw IL, Liang SX. Does the loss of arid1a (baf-250a) expression in endometrial clear cell carcinomas have any clinicopathologic significance? A pilot assessment. J Cancer 2012; 3: 129-136.

30.    Guan B, Mao TL, Panuganti PK, et al. Mutation and loss of expression of arid1a in uterine low-grade endometrioid carcinoma. Am J Surg Pathol 2011; 35(5): 625-632.

31.    Kir G, Soylemez T, Olgun ZC, Aydin A, Mccluggage WG. Correlation of pd-l1 expression with immunohistochemically determined molecular profile in endometrial carcinomas. Virchows Arch 2020; 477(6): 845-856.

32.    Ayhan A, Mao TL, Seckin T, et al. Loss of arid1a expression is an early molecular event in tumor progression from ovarian endometriotic cyst to clear cell and endometrioid carcinoma. Int J Gynecol Cancer 2012; 22(8): 1310-1315.

33.    Baniak N, Fadare O, Köbel M, et al. Targeted molecular and immunohistochemical analyses of endometrial clear cell carcinoma show that pole mutations and DNA mismatch repair protein deficiencies are uncommon. Am J Surg Pathol 2019; 43(4): 531-537.

34.    Bae HS, Kim H, Young Kwon S, et al. Should endometrial clear cell carcinoma be classified as type ii endometrial carcinoma? Int J Gynecol Pathol 2015; 34(1): 74-84.

35.    Bosse T, Ter Haar NT, Seeber LM, et al. Loss of arid1a expression and its relationship with pi3k-akt pathway alterations, tp53 and microsatellite instability in endometrial cancer. Mod Pathol 2013; 26(11): 1525-1535.

36.    Hashi A, Yuminamochi T, Murata S, et al. Wilms tumor gene immunoreactivity in primary serous carcinomas of the fallopian tube, ovary, endometrium, and peritoneum. Int J Gynecol Pathol 2003; 22(4): 374-377.

37.    Dupont J, Wang X, Marshall DS, et al. Wilms tumor gene (wt1) and p53 expression in endometrial carcinomas: A study of 130 cases using a tissue microarray. Gynecol Oncol 2004; 94(2): 449-455.

38.    Acs G, Pasha T, Zhang PJ. Wt1 is differentially expressed in serous, endometrioid, clear cell, and mucinous carcinomas of the peritoneum, fallopian tube, ovary, and endometrium. Int J Gynecol Pathol 2004; 23(2): 110-118.

39.    Euscher ED, Malpica A, Deavers MT, Silva EG. Differential expression of wt-1 in serous carcinomas in the peritoneum with or without associated serous carcinoma in endometrial polyps. Am J Surg Pathol 2005; 29(8): 1074-1078.

40.    Heckl M, Schmoeckel E, Hertlein L, et al. The arid1a, p53 and ss-catenin statuses are strong prognosticators in clear cell and endometrioid carcinoma of the ovary and the endometrium. PLoS One 2018; 13(2): e0192881.

41.    Chen W, Husain A, Nelson GS, et al. Immunohistochemical profiling of endometrial serous carcinoma. Int J Gynecol Pathol 2017; 36(2): 128-139.

42.    Mao TL, Ardighieri L, Ayhan A, et al. Loss of arid1a expression correlates with stages of tumor progression in uterine endometrioid carcinoma. Am J Surg Pathol 2013; 37(9): 1342-1348.

43.    Mao TL, Ayhan A, Kuo KT, et al. Immunohistochemical study of endometrial high-grade endometrioid carcinoma with or without a concurrent low-grade component: Implications for pathogenetic and survival differences. Histopathology 2015; 67(4): 474-482.

44.    Mccluggage WG, Connolly LE, Mcbride HA, Kalloger S, Gilks CB. Hmga2 is commonly expressed in uterine serous carcinomas and is a useful adjunct to diagnosis. Histopathology 2012; 60(4): 547-553.

45.    Zhang ZM, Xiao S, Sun GY, et al. The clinicopathologic significance of the loss of baf250a (arid1a) expression in endometrial carcinoma. Int J Gynecol Cancer 2014; 24(3): 534-540.

46.    Yen TT, Miyamoto T, Asaka S, et al. Loss of arid1a expression in endometrial samplings is associated with the risk of endometrial carcinoma. Gynecol Oncol 2018; 150(3): 426-431.

47.    Werner HM, Berg A, Wik E, et al. Arid1a loss is prevalent in endometrial hyperplasia with atypia and low-grade endometrioid carcinomas. Mod Pathol 2013; 26(3): 428-434.

48.    Taskin OC, Onder S, Topuz S, et al. A selected immunohistochemical panel aids in differential diagnosis and prognostic stratification of subtypes of high-grade endometrial carcinoma: A clinicopathologic and immunohistochemical study at a single institution. Appl Immunohistochem Mol Morphol 2017; 25(10): 696-702.

49.    Pasanen A, Loukovaara M, Butzow R. Clinicopathological significance of deficient DNA mismatch repair and mlh1 promoter methylation in endometrioid endometrial carcinoma. Mod Pathol 2020; 33(7): 1443-1452.

50.    An HJ, Lee YH, Cho NH, et al. Alteration of pten expression in endometrial carcinoma is associated with down-regulation of cyclin-dependent kinase inhibitor, p27. Histopathology 2002; 41(5): 437-445.

51.    Djordjevic B, Hennessy BT, Li J, et al. Clinical assessment of pten loss in endometrial carcinoma: Immunohistochemistry outperforms gene sequencing. Mod Pathol 2012; 25(5): 699-708.

52.    Hedley C, Sriraksa R, Showeil R, Van Noorden S, El-Bahrawy M. The frequency and significance of wt-1 expression in serous endometrial carcinoma. Hum Pathol 2014; 45(9): 1879-1884.

53.    Fadare O, Desouki MM, Gwin K, et al. Frequent expression of napsin a in clear cell carcinoma of the endometrium: Potential diagnostic utility. Am J Surg Pathol 2014; 38(2): 189-196.

54.    Chiesa-Vottero AG, Malpica A, Deavers MT, et al. Immunohistochemical overexpression of p16 and p53 in uterine serous carcinoma and ovarian high-grade serous carcinoma. Int J Gynecol Pathol 2007; 26(3): 328-333.

55.    Iwamoto M, Nakatani Y, Fugo K, Kishimoto T, Kiyokawa T. Napsin a is frequently expressed in clear cell carcinoma of the ovary and endometrium. Hum Pathol 2015; 46(7): 957-962.

56.    Kounelis S, Kapranos N, Kouri E, et al. Immunohistochemical profile of endometrial adenocarcinoma: A study of 61 cases and review of the literature. Mod Pathol 2000; 13(4): 379-388.

57.    Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Comparison of estrogen and progesterone receptor, ki-67, and p53 immunoreactivity in uterine endometrioid carcinoma and endometrioid carcinoma with squamous, mucinous, secretory, and ciliated cell differentiation. Hum Pathol 1998; 29(9): 924-931.

58.    Nelson GS, Pink A, Lee S, et al. Mmr deficiency is common in high-grade endometrioid carcinomas and is associated with an unfavorable outcome. Gynecol Oncol 2013; 131(2): 309-314.

59.    Ruba S, Doherty D, Stewart CJR. A detailed morphological and immunohistochemical comparison of primary endometrial and tubo-ovarian high-grade serous carcinomas and their corresponding omental metastases. Pathology 2020; 52(2): 197-205.

60.    Yan Z, Hui P. Minimal uterine serous carcinoma with extrauterine tumor of identical morphology: An immunohistochemical study of 13 cases. Appl Immunohistochem Mol Morphol 2010; 18(1): 75-79.

61.    Zhang L, Liu Y, Hao S, Woda BA, Lu D. Imp2 expression distinguishes endometrioid from serous endometrial adenocarcinomas. Am J Surg Pathol 2011; 35(6): 868-872.

62.    Hiramatsu K, Yoshino K, Serada S, et al. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas. Br J Cancer 2016; 114(5): 554-561.

63.    Moritz AW, Schlumbrecht MP, Nadji M, Pinto A. Expression of neuroendocrine markers in non-neuroendocrine endometrial carcinomas. Pathology 2019; 51(4): 369-374.

64.    Ervine A, Leung S, Gilks CB, Mccluggage WG. Thyroid transcription factor-1 (ttf-1) immunoreactivity is an adverse prognostic factor in endometrioid adenocarcinoma of the uterine corpus. Histopathology 2014; 64(6): 840-846.

65.    Siami K, Mccluggage WG, Ordonez NG, et al. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol 2007; 31(11): 1759-1763.

66.    Nili F, Tavakoli M, Izadi Mood N, Saffar H, Sarmadi S. Napsin-a expression, a reliable immunohistochemical marker for diagnosis of ovarian and endometrial clear cell carcinomas. Iran J Pathol 2020; 15(2): 81-85.

67.    Al-Maghrabi JA, Butt NS, Anfinan N, et al. Infrequent immunohistochemical expression of napsin a in endometrial carcinomas. Appl Immunohistochem Mol Morphol 2017; 25(9): 632-638.

68.    Pors J, Segura S, Cheng A, et al. Napsin-a and amacr are superior to hnf-1beta in distinguishing between mesonephric carcinomas and clear cell carcinomas of the gynecologic tract. Appl Immunohistochem Mol Morphol 2020; 28(8): 593-601.

69.    Jin C, Hacking S, Komforti MK, Nasim M. A comparison of death domain-associated protein 6 in different endometrial carcinomas histotypes. Biomark Insights 2019; 14: 1177271919864892.

70.    Ju B, Wang J, Yang B, et al. Morphologic and immunohistochemical study of clear cell carcinoma of the uterine endometrium and cervix in comparison to ovarian clear cell carcinoma. Int J Gynecol Pathol 2018; 37(4): 388-396.

71.    Zannoni GF, Santoro A, Angelico G, et al. Clear cell carcinoma of the endometrium: An immunohistochemical and molecular analysis of 45 cases. Hum Pathol 2019; 92: 10-17.

72.    Ji JX, Cochrane DR, Tessier-Cloutier B, et al. Use of immunohistochemical markers (HNF-1beta, napsin a, ER, CTH, and ASS1) to distinguish endometrial clear cell carcinoma from its morphologic mimics including arias-stella reaction. Int J Gynecol Pathol 2020; 39(4): 344-353.

73.    Doulgeraki T, Vagios S, Kavoura E, et al. Mismatch repair status in high-grade endometrial carcinomas of endometrioid and non-endometrioid type. J BUON 2019; 24(5): 2020-2027.

74.    Doghri R, Houcine Y, Boujelbène N, et al. Mismatch repair deficiency in endometrial cancer: Immunohistochemistry staining and clinical implications. Appl Immunohistochem Mol Morphol 2019; 27(9): 678-682.

75.    Backes FJ, Haag J, Cosgrove CM, et al. Mismatch repair deficiency identifies patients with high-intermediate-risk (hir) endometrioid endometrial cancer at the highest risk of recurrence: A prognostic biomarker. Cancer 2019; 125(3): 398-405.

76.    Pina A, Wolber R, Mcalpine JN, Gilks B, Kwon JS. Endometrial cancer presentation and outcomes based on mismatch repair protein expression from a population-based study. Int J Gynecol Cancer 2018; 28(8): 1624-1630.

77.    Peterson LM, Kipp BR, Halling KC, et al. Molecular characterization of endometrial cancer: A correlative study assessing microsatellite instability, mlh1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. Int J Gynecol Pathol 2012; 31(3): 195-205.

78.    Chapel DB, Yamada SD, Cowan M, Lastra RR. Immunohistochemistry for mismatch repair protein deficiency in endometrioid endometrial carcinoma yields equivalent results when performed on endometrial biopsy/curettage or hysterectomy specimens. Gynecol Oncol 2018; 149(3): 570-574.

79.    Zhang X, Yu M. Undifferentiated endometrial carcinoma: A selected immunohistochemical panel including pax-8 and e-cadherin for aiding distinction from other endometrial carcinomas. Ann Diagn Pathol 2019; 39: 36-41.

80.    Tessier-Cloutier B, Soslow RA, Stewart CJR, Kobel M, Lee CH. Frequent loss of claudin-4 expression in dedifferentiated and undifferentiated endometrial carcinomas. Histopathology 2018; 73(2): 299-305.

81.    Taraif SH, Deavers MT, Malpica A, Silva EG. The significance of neuroendocrine expression in undifferentiated carcinoma of the endometrium. Int J Gynecol Pathol 2009; 28(2): 142-147.

82.    Strehl JD, Wachter DL, Fiedler J, et al. Pattern of smarcb1 (ini1) and smarca4 (brg1) in poorly differentiated endometrioid adenocarcinoma of the uterus: Analysis of a series with emphasis on a novel smarca4-deficient dedifferentiated rhabdoid variant. Ann Diagn Pathol 2015; 19(4): 198-202.

83.    Stewart CJ, Crook ML. Fascin expression in undifferentiated and dedifferentiated endometrial carcinoma. Hum Pathol 2015; 46(10): 1514-1520.

84.    Saad RS, Mashhour M, Noftech-Mozes S, et al. P16ink4a expression in undifferentiated carcinoma of the uterus does not exclude its endometrial origin. Int J Gynecol Pathol 2012; 31(1): 57-65.

85.    Rosa-Rosa JM, Leskelä S, Cristóbal-Lana E, et al. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas. Mod Pathol 2016; 29(11): 1390-1398.

86.    Ramalingam P, Masand RP, Euscher ED, Malpica A. Undifferentiated carcinoma of the endometrium: An expanded immunohistochemical analysis including pax-8 and basal-like carcinoma surrogate markers. Int J Gynecol Pathol 2016; 35(5): 410-418.

87.    Onder S, Taskin OC, Sen F, et al. High expression of sall4 and fascin, and loss of e-cadherin expression in undifferentiated/dedifferentiated carcinomas of the endometrium: An immunohistochemical and clinicopathologic study. Medicine (Baltimore) 2017; 96(10): e6248.

88.    Li A, Jiao Y, Yong KJ, et al. Sall4 is a new target in endometrial cancer. Oncogene 2015; 34(1): 63-72.

89.    Liu L, Zhang J, Yang X, et al. Sall4 as an epithelial-mesenchymal transition and drug resistance inducer through the regulation of c-myc in endometrial cancer. PLoS One 2015; 10(9): e0138515.

90.    Li Z, Zhao C. Clinicopathologic and immunohistochemical characterization of dedifferentiated endometrioid adenocarcinoma. Appl Immunohistochem Mol Morphol 2016; 24(8): 562-568.

91.    Lac V, Nazeran TM, Tessier-Cloutier B, et al. Oncogenic mutations in histologically normal endometrium: The new normal? J Pathol 2019; 249(2): 173-181.

92.    Kolin DL, Quick CM, Dong F, et al. Smarca4-deficient uterine sarcoma and undifferentiated endometrial carcinoma are distinct clinicopathologic entities. Am J Surg Pathol 2020; 44(2): 263-270.

93.    Kobel M, Piskorz AM, Lee S, et al. Optimized p53 immunohistochemistry is an accurate predictor of tp53 mutation in ovarian carcinoma. J Pathol Clin Res 2016; 2(4): 247-258.

94.    Karnezis AN, Hoang LN, Coatham M, et al. Loss of switch/sucrose non-fermenting complex protein expression is associated with dedifferentiation in endometrial carcinomas. Mod Pathol 2016; 29(3): 302-314.

95.    Hoang LN, Lee YS, Karnezis AN, et al. Immunophenotypic features of dedifferentiated endometrial carcinoma - insights from brg1/ini1-deficient tumours. Histopathology 2016; 69(4): 560-569.

96.    Hacking S, Jin C, Komforti M, Liang S, Nasim M. Mmr deficient undifferentiated/dedifferentiated endometrial carcinomas showing significant programmed death ligand-1 expression (sp 142) with potential therapeutic implications. Pathol Res Pract 2019; 215(10): 152552.

97.    Espinosa I, Lee CH, D’angelo E, Palacios J, Prat J. Undifferentiated and dedifferentiated endometrial carcinomas with pole exonuclease domain mutations have a favorable prognosis. Am J Surg Pathol 2017; 41(8): 1121-1128.

98.    Abeler VM, Kjørstad KE, Nesland JM. Undifferentiated carcinoma of the endometrium. A histopathologic and clinical study of 31 cases. Cancer 1991; 68(1): 98-105.

99.    Kihara A, Amano Y, Matsubara D, et al. Brg1, ini1, and arid1b deficiency in endometrial carcinoma: A clinicopathologic and immunohistochemical analysis of a large series from a single institution. Am J Surg Pathol 2020;

100.  Pan XY, Li X, Che YC, et al. Overexpression of claudin-4 may be involved in endometrial tumorigenesis. Oncol Lett 2013; 5(4): 1422-1426.

101.  Tamura T, Jobo T, Watanabe J, Kanai T, Kuramoto H. Neuroendocrine features in poorly differentiated endometrioid adenocarcinomas of the endometrium. Int J Gynecol Cancer 2006; 16(2): 821-826.

102.  Alkushi A, Irving J, Hsu F, et al. Immunoprofile of cervical and endometrial adenocarcinomas using a tissue microarray. Virchows Arch 2003; 442(3): 271-277.

103.  Fadare O, Parkash V, Dupont WD, et al. The diagnosis of endometrial carcinomas with clear cells by gynecologic pathologists: An assessment of interobserver variability and associated morphologic features. Am J Surg Pathol 2012; 36(8): 1107-1118.

104.  Han G, Soslow RA, Wethington S, et al. Endometrial carcinomas with clear cells: A study of a heterogeneous group of tumors including interobserver variability, mutation analysis, and immunohistochemistry with hnf-1beta. Int J Gynecol Pathol 2015; 34(4): 323-333.

105.  Salibay C, Fadare O. High-grade endometrioid carcinoma of the endometrium with a gata-3-positive/pax8-negative immunophenotype metastatic to the breast: A potential diagnostic pitfall. Int J Surg Pathol 2020; 28(6): 631-636.

106.  Zhang L, Cai Z, Ambelil M, Conyers J, Zhu H. Mesonephric adenocarcinoma of the uterine corpus: Report of 2 cases and review of the literature. Int J Gynecol Pathol 2019; 38(3): 224-229.

107.  Mcfarland M, Quick CM, Mccluggage WG. Hormone receptor-negative, thyroid transcription factor 1-positive uterine and ovarian adenocarcinomas: Report of a series of mesonephric-like adenocarcinomas. Histopathology 2016; 68(7): 1013-1020.

108.  Hoang LN, Mcconechy MK, Kobel M, et al. Histotype-genotype correlation in 36 high-grade endometrial carcinomas. Am J Surg Pathol 2013; 37(9): 1421-1432.

109.  Thomas S, Hussein Y, Bandyopadhyay S, et al. Interobserver variability in the diagnosis of uterine high-grade endometrioid carcinoma. Arch Pathol Lab Med 2016; 140(8): 836-843.

110.  Murali R, Davidson B, Fadare O, et al. High-grade endometrial carcinomas: Morphologic and immunohistochemical features, diagnostic challenges and recommendations. Int J Gynecol Pathol 2019; 38 Suppl 1: S40-S63.

111.  Gilks CB, Oliva E, Soslow RA. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am J Surg Pathol 2013; 37(6): 874-881.

112.  Gatius S, Matias-Guiu X. Practical issues in the diagnosis of serous carcinoma of the endometrium. Mod Pathol 2016; 29 Suppl 1: S45-58.

113.  Coosemans A, Moerman P, Verbist G, et al. Wilms’ tumor gene 1 (wt1) in endometrial carcinoma. Gynecol Oncol 2008; 111(3): 502-508.

114.  Yamamoto S, Tsuda H, Aida S, et al. Immunohistochemical detection of hepatocyte nuclear factor 1beta in ovarian and endometrial clear-cell adenocarcinomas and nonneoplastic endometrium. Hum Pathol 2007; 38(7): 1074-1080.

115.  Kobel M, Meng B, Hoang LN, et al. Molecular analysis of mixed endometrial carcinomas shows clonality in most cases. Am J Surg Pathol 2016; 40(2): 166-180.

116.  Sholl AB, Aisner DL, Behbakht K, Post MD. Novel tp53 gene mutation and correlation with p53 immunohistochemistry in a mixed epithelial carcinoma of the endometrium. Gynecol Oncol Case Rep 2012; 3: 11-13.

117.  Heatley MK. Wt-1 in ovarian and endometrioid serous carcinoma: A meta-analysis. Histopathology 2005; 46(4): 468.

118.  Mccluggage WG. Wt1 is of value in ascertaining the site of origin of serous carcinomas within the female genital tract. International Journal of Gynecological Pathology 2004; 23(2): 97-99.

119.  Hirschowitz L, Ganesan R, Mccluggage WG. Wt1, p53 and hormone receptor expression in uterine serous carcinoma. Histopathology 2009; 55(4): 478-482.

120.  Nofech-Mozes S, Khalifa MA, Ismiil N, et al. Immunophenotyping of serous carcinoma of the female genital tract. Modern Pathol 2008; 21(9): 1147-1155.

121.  Kobel M, Kalloger SE, Carrick J, et al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. American Journal of Surgical Pathology 2009; 33(1): 14-21.

122.  Celik B, Bulut T, Yalcin AD. Tissue he4 expression discriminates the ovarian serous carcinoma but not the uterine serous carcinoma patients. A new adjunct to the origin of the tumor site. Pathol Oncol Res 2020; 26(2): 1145-1151.

123.  Coatham M, Li X, Karnezis AN, et al. Concurrent arid1a and arid1b inactivation in endometrial and ovarian dedifferentiated carcinomas. Mod Pathol 2016; 29(12): 1586-1593.

124.  Stewart CJ, Crook ML. Swi/snf complex deficiency and mismatch repair protein expression in undifferentiated and dedifferentiated endometrial carcinoma. Pathology 2015; 47(5): 439-445.

125.  Espinosa I, De Leo A, D’angelo E, et al. Dedifferentiated endometrial carcinomas with neuroendocrine features: A clinicopathologic, immunohistochemical, and molecular genetic study. Hum Pathol 2018; 72: 100-106.

126.  Pocrnich CE, Ramalingam P, Euscher ED, Malpica A. Neuroendocrine carcinoma of the endometrium: A clinicopathologic study of 25 cases. Am J Surg Pathol 2016; 40(5): 577-586.

127.  Le Gallo M, Rudd ML, Urick ME, et al. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing. Cancer 2017; 123(17): 3261-3268.

128.  Jin C, Hacking S, Liang S, Nasim M. Pd-l1/pd-1 expression in endometrial clear cell carcinoma: A potential surrogate marker for clinical trials. Int J Surg Pathol 2020; 28(1): 31-37.

129.  Kobel M, Tessier-Cloutier B, Leo J, et al. Frequent mismatch repair protein deficiency in mixed endometrioid and clear cell carcinoma of the endometrium. Int J Gynecol Pathol 2017; 36(6): 555-561.

130.  Hoang LN, Mcconechy MK, Meng B, et al. Targeted mutation analysis of endometrial clear cell carcinoma. Histopathology 2015; 66(5): 664-674.

131.  Fadare O, Roma AA, Parkash V, Zheng W, Walavalkar V. Does a p53 “wild-type” immunophenotype exclude a diagnosis of endometrial serous carcinoma? Adv Anat Pathol 2018; 25(1): 61-70.

132.  Kobel M, Ronnett BM, Singh N, et al. Interpretation of p53 immunohistochemistry in endometrial carcinomas: Toward increased reproducibility. Int J Gynecol Pathol 2019; 38 Suppl 1: S123-S131.

Labels
Anatomical pathology Forensic medical examiner Toxicology

Article was published in

Czecho-Slovak Pathology

Issue 2

2021 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#