Modeling human kidney in vitro – the potential of renal organoids and tubuloids for urology
Authors:
Viktória Filipková 1; Tomáš Pelikán 2; Roman Zachoval 1; Petr Heneberg 2
Authors‘ workplace:
Urologická klinika 3. LF UK, a Fakultní Thomayerovy, nemocnice, Praha
1; Interní klinika 3. LF UK, a FN Královské Vinohrady, Praha
2
Published in:
Ces Urol 2025; 29(3): 131-140
Category:
Review article
doi:
https://doi.org/10.48095/cccu2025019
Overview
Renal organoids are advanced tissue cultures that resemble key structural, functional, and developmental aspects of native kidney tissue in vitro. Organoids enable a person-alized approach to disease diagnosis and treatment, with their relevance in urology continuously increasing. Organoids derived from induced pluripotent stem cells allow modeling of embryonic nephron development, whereas tubuloids generated from adult cells better mimic the functions of mature renal tissue. Due to their ability to reflect the genetic and functional characteristics of individual patients, organoids are utilized for drug efficacy and toxicity testing, investigation of molecular mechanisms underlying kidney diseases, and hold potential in regenerative medicine. Tumor organoids offer promising applications in oncogenesis research, tumor microenvironment modeling, and prediction of therapeutic responses. Despite current challenges in cultivation and functional integration of these tissues, the clinical applications of renal organoids are rapidly expanding.
Major statement: This review presents a comprehensive survey of renal organoids, encompassing their characterization, potential applications, limitations, and prospects, with particular emphasis on their relevance to the field of urology.
Keywords:
cancer organoids – kidney organoids – personalized medicine – renal cell carcinoma – tubu-loid
Sources
1. Duval K, Grover H, Han LH et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 2017; 32(4): 266–277. doi: 10.1152/physiol.00036.2016.
2. Clevers H. Modeling development and disease with organoids. Cell 2016; 165(7): 1586–1597. doi: 10.1016/j.cell.2016.05.082.
3. Schutgens F, Verhaar MC, Rookmaaker MB. Pluripotent stem cell-derived kidney organoids: an in vivo-like in vitro technology. Eur J Pharmacol 2016; 790 : 12–20. doi: 10.1016/j.ejphar.2016.06.059.
4. Gao D, Vela I, Sboner A et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014; 159(1): 176–187. doi: 10.1016/j.cell.2014.08.016.
5. Mieville V, Griffioen AW, Benamran D et al. Advanced in vitro models for renal cell carcinoma therapy design. Biochim Biophys Acta Rev Cancer 2023; 1878(5): 188942. doi: 10.1016/j.bbcan.2023.188942.
6. Lensink MA, Jongsma KR, Boers SN et al. Responsible use of organoids in precision medicine: the need for active participant involvement. Devel-
opment 2020; 147(7): dev177972. doi: 10.1242/dev.177972.
7. Perrone F, Zilbauer M. Biobanking of human gut organoids for translational research. Exp Mol Med 2021; 53(10): 1451–1458. doi: 10.1038/s12276-021-00606-x.
8. Stewart BJ, Ferdinand JR, Young MD et al. Spatiotemporal immune zonation of the human kidney. Science 2019; 365(6460): 1461–1466. doi: 10.1126/science.aat5031.
9. McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 2017; 144(6): 958–962. doi: 10.1242/dev.140731.
10. Little MH, Kumar SV, Forbes T. Recapitulating kidney development: progress and challenges. Semin Cell Dev Biol 2019; 91 : 153–168. doi: 10.1016/j.semcdb.2018.08.015.
11. Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 2012; 4(5): a008300. doi: 10.1101/cshperspect.a008300.
12. Kramann R, Kusaba T, Humphreys BD. Who regenerates the kidney tubule? Nephrol Dial Transplant 2015; 30(6): 903–910. doi: 10.1093/ndt/gfu281.
13. Takasato M, Er PX, Chiu HS et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015; 526(7574): 564–568. doi: 10.1038/nature15695.
14. Morizane R, Lam AQ, Freedman BS et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 2015; 33(11): 1193–1200. doi: 10.1038/nbt.3392.
15. Chambers BE, Weaver NE, Wingert RA. The „3Ds“ of growing kidney organoids: advances in nephron development, disease modeling, and drug screening. Cells 2023; 12(4): 549. doi: 10.3390/cells12040549.
16. Combes AN, Zappia L, Er PX et al. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med 2019; 11(1): 3. doi: 10.1186/s13073-019-0615-0.
17. Wu H, Uchimura K, Donnelly EL et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 2018; 23(6): 869–881. doi: 10.1016/j.stem.2018.10.010.
18. Vandana JJ, Manrique C, Lacko LA et al. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. Cell Stem Cell 2023; 30(5): 571–591. doi: 10.1016/j.stem.2023.04.011.
19. Gerhardt LM, McMahon AP. Identifying common molecular mechanisms in experimental and human acute kidney injury. Semin Nephrol 2022; 42(3): 151286. doi: 10.1016/j.semnephrol.2022.10.012.
20. Soo JY, Jansen J, Masereeuw R et al. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14(6): 378–393. doi: 10.1038/s41581-018-0003-9.
21. Jun DY, Kim SY, Na JC et al. Tubular organotypic culture model of human kidney. PLoS One 2018; 13(10): e0206447. doi: 10.1371/journal.pone.0206447.
22. Gupta N, Matsumoto T, Hiratsuka K et al. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Sci Transl Med 2022; 14(634): eabj4772. doi: 10.1126/scitranslmed.abj4772.
23. Wang H, Brown PC, Chow EC et al. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci 2021; 14(5): 1659–1680. doi: 10.1111/cts.13066.
24. Tekguc M, Gaal RC, Uzel SG et al. Kidney organoids: a pioneering model for kidney diseases. Transl Res 2022; 250 : 1–17. doi: 10.1016/j.trsl.2022.06.012.
25. Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 2020; 21(10): 571–584. doi: 10.1038/s41580-020-0259-3.
26. Phipson B, Er PX, Combes AN et al. Evaluation of variability in human kidney organoids. Nat Methods 2019; 16(1): 79–87. doi: 10.1038/s41592-018-0253-2.
27. Nishinakamura R. Advances and challenges toward developing kidney organoids for clinical applications. Cell Stem Cell 2023; 30(8): 1017–1027. doi: 10.1016/j.stem.2023.07.011.
28. Vives J, Batlle-Morera L. The challenge of developing human 3D organoids into medicines. Stem Cell Res Ther 2020; 11(1): 72. doi: 10.1186/s13287-020-1586-1.
29. Homan KA, Gupta N, Kroll KT et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 2019; 16(3): 255–262. doi: 10.1038/s41592-019-0325-y.
30. Allison SJ. Fluid flow enhances vascularization and maturation of kidney organoids. Nature Reviews Nephrology 2019; 15(5): 254. doi: 10.1038/s41581-019-0126-7.
31. Calandrini C, Drost J. Generation of human kidney tubuloids from tissue and urine. J Vis Exp 2021; 170: e62404. doi: 10.3791/62404.
32. Schutgens F, Rookmaaker MB, Margaritis T et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37(3): 303–313. doi: 10.1038/s41587-019-0048-8.
33. Grassi L, Alfonsi R, Francescangeli F et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis 2019; 10(3): 201. doi: 10.1038/s41419-019-1453-0.
34. Sugimoto S, Ohta Y, Fujii M et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell 2018; 22(2): 171–176. doi: 10.1016/j.stem.2017.11.012.
35. Guo H, Deng N, Dou L et al. 3-D human renal tubular organoids generated from urine-derived stem cells for nephrotoxicity screening. ACS Biomater Sci Eng 2020; 6(12): 6701–6709. doi: 10.1021/acsbiomaterials.0c01468.
36. EAU Guidelines. Edn. presented at the EAU Annual Congress Madrid, Spain 2025.
37. Liu J, Dang H, Wang XW. The significance of intertumor and intratumor heterogeneity in liver cancer. Exp Mol Med 2018; 50(1): e416. doi: 10.1038/emm.2017.165.
38. Tse RT, Wong CY, Ding X et al. The establishment of kidney cancer organoid line in drug testing. Cancer Med 2024; 13(12): e7432. doi: 10.1002/cam4.7432.
39. Li Z, Xu H, Yu L et al. Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clin Transl Med 2022; 12(7): e970. doi: 10.1002/ctm2.970.
40. Li Z, You Y, Feng B et al. Construction methods and latest applications of kidney cancer organoids. Oncol Rev 2024; 18 : 1434981. doi: 10.3389/or.2024.1434981.
41. Esser LK, Branchi V, Leonardelli S et al. Cultivation of clear cell renal cell carcinoma patient-derived organoids in an air-liquid interface system as a tool for studying individualized therapy. Front Oncol 2020; 10 : 1775. doi: 10.3389/fonc.2020.01775.
42. Neal JT, Li X, Zhu J et al. Organoid modeling of the tumor immune microenvironment. Cell 2018; 175(7): 1972–1988. doi: 10.1016/j.cell.2018.11.021.
43. Collins AT, Lang SH. A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. PeerJ 2018; 6: e5981. doi: 10.7717/peerj.5981.
44. Tse RT, Zhao H, Wong CY et al. Current status of organoid culture in urological malignancy. Int J Urol 2022; 29(2): 102–113. doi: 10.1111/iju.14727.
Labels
Paediatric urologist Nephrology UrologyArticle was published in
Czech Urology

2025 Issue 3
Most read in this issue
- Editorial
- Modeling human kidney in vitro – the potential of renal organoids and tubuloids for urology
- Penile rehabilitation after radical prostatectomy
- Incidental finding of prostate cancer during surgery for benign prostatic hyperplasia – how to proceed?