Authors: Michaela Kripnerová;  Jiří Hatina
Authors‘ workplace: Ústav biologie, Lékařská fakulta UK v Plzni
Published in: Ces Urol 2015; 19(4): 270-280
Category: Review article


Major statement:
Cancer cell lines and progression series thereof represent a crucial experimental tool to unravel basic biological mechanisms of carcinogenesis, including therapeutic response. The article gives an overview of current cell culture models of urothelial carcinoma, focusing on chemoresistance mechanisms.

Urothelial bladder carcinoma is the seventh most frequent tumor type in our population. From both biological and clinical points of view, it represents a very heterogeneous group of cancers, from non-muscle-invasive superficial papillary carcinoma to muscle-invasive carcinoma as the two major subtypes. Cell culture of urothelial carcinoma is relatively feasible, with more than 50 established tumor cell lines. Most of them were derived from late stage muscle-invasive tumors. In contrast, cell lines derived from early stages and/or papillary superficial tumors are relatively scarce. Studying tumor progression is largely facilitated by use of progression cell line series – an array of several cell lines established on the same genetic background with gradually increasing transformation status. All available progression series of urothelial carcinoma cell lines have been experimentally established either by various in vitro manipulations or in vivo, following a spontaneous progression of an original cancer cell line after its introduction into a suitable host animal. An important variant of cancer cell line progression series is provided by derivation of chemoresistant daughter cell lines after administration of cytostatics to a chemosensitive parental cell line. This specific variant can substantially contribute to our understanding of various biological mechanisms of chemoresistance. An important new finding in this respect is the fact that in many if not all chemoresistant daughter cell lines, several biologically distinct chemoresistance mechanisms seem to be co-expressed. In addition to these entirely experimental applications, such chemoresistant cancer cell lines can provide valuable preclinical models to test new therapeutic options aimed at recovery of chemosensitivity.

Cancer cell lines, chemoresistance, chemotherapy, urothelial carcinoma.


1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015 Mar; 65(2): 87–108.

2. Burger M, Catto JW, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 2013 Feb; 63(2): 234–241.

3. Dušek L, Mužík J, Gelnarová E, et al. Cancer Incidence and Mortality in the Czech Republic. Klin Onkol 2010; 23(5): 311–324.

4. Dušek L, Pavlik T, Majek O, et al. Estimating Cancer Incidence, Prevalence, and the Number of Cancer Patients Treated with Anti-tumor Therapy in 2015 and 2020 – Analysis of the Czech National Cancer Registry. Klin Onkol 2015; 28(1): 30–43.

5. Soukup V, Pešl M. Karcinom močového měchýře. Postgraduální medicína 2001; 13(1): 42–47.

6. Pešl M, Soukup V, Babjuk M, et al. Hodnocení významu klinicko-patologických prognostických faktorů u nádorů močového měchýře neinfiltrujících svalovinu. Ces Urol 2011; 15(4): 222–228.

7. Raghavan MD, Stein JP, Cote D, Jones JS. Bladder Cancer. In: Holland JF, Frei E, eds. Cancer Medicine. 8. ed. Shelton: PMPH-USA; 2009: 1219–1227.

8. Dinney CP, McConkey DJ, Millikan RE, et al. Focus on bladder cancer. Cancer Cell 2004 Aug; 6(2): 111–6.

9. Luis NM, López-Knowles E, Real FX. Molecular biology of bladder cancer. Clin Transl Oncol 2007 Jan; 9(1): 5–12.

10. Knüchel-Clarke R, Hartman A. Pathogenese und Tumorklassifikation des Harnblasenkarzinoms. Der Onkologe 2012 Nov; 18(11): 961–970.

11. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nature Reviews Cancer 2015; 15: 25–41.

12. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2016 July; 499: 214–218.

13. Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014 Feb; 25(2): 152–165.

14. Babjuk M, Soukup V. Intravezikální léčba povrchových nádorů močového měchýře. Urologie pro praxi 2004; 3: 116–120.

15. Kyselová M. BCG imunoterapie nádorů močového měchýře. Urologie pro praxi 2009; 10 (5): 302–304.

16. Dvořáček J, Babjuk M, et al. Onkourologie. 1. Vydání, Praha: Galén; 2005.

17. Meran JG, Kudlacek S, Beke D. Onkologische Therapie des Harnblasenkarzinoms. Wien Med Wochenschr 2007; 157(7–8): 157–161.

18. Von der Maase H, Sengelov L, Roberts JT, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 2005 Jul; 23(21): 4602–4608.

19. Hatina J, Kripnerová M. Obecné základy kultivace buněk v tkáňové kultuře. Výukový portál Lékařské fakulty v Plzni [online] 28.3.2014, poslední aktualizace 9. 9. 2014 [cit. 2015-06-30] Dostupný z WWW: <http://mefanet.lfp.cuni.cz/clanky.php?aid=332>. ISSN 1804-4409

20. Hatina J, Kripnerová M, Matoušková E. Orgánové, organotypické a trojrozměrné kultury. Výukový portál Lékařské fakulty v Plzni [online] 28.1.2015, poslední aktualizace 9. 3. 2015 [cit. 2015-06-30] Dostupný z WWW: <http://mefanet.lfp.cuni.cz/clanky.php?aid=441>. ISSN 1804-4409.

21. Earl J, Rico D, Carrillo-de-Santa-Pau E, et al. The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies. BMC Genomics 2015 May; 16(1): 403.

22. Seifert HH, Meyer A, Cronauer MV, et al. A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol. 2007 Jun; 25(3): 297–302.

23. Koch A, Hatina J, Rieder H, et al. Discovery of TP53 splice variants in two novel papillary urothelial cancer cell lines. Cell Oncol (Dordr) 2012 Aug; 35(4): 243–257.

24. Hatina J, Kripnerova M, Tukova J, et al. Tumor-Stroma Interaktionen im Harnblasenkarzinom. Urologe 2015; 54: 516–525.

25. Hatina J, Ruzicka T. Stellenwert der Zellkulturmodelle in kutaner Tumorbiologie. Teil I: Zelllinien tumorigen transformierter Zellen. Hautarzt. 2008 Jan; 59(1): 36–45.

26. Sarkar S, Jülicher KP, Burger MS, et al. Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers. Cancer Res 2000 Jul 15; 60(14): 3862–3871.

27. Hatina J, Huckenbeck W, Rieder H, Seifert HH, Schulz WA. Harnblasenkarzinomzelllinien als Modellsysteme zur Pathobiologie des Harnblasenkarzinoms. Überblick und Etablierung einer neuen Progressionsserie. Urologe A 2008 Jun; 47(6): 724–734.

28. Bubenik J, Baresova M, Viklicky V, et al. Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int J Cancer 1973 May; 11(3): 765–773.

29. Gildea JJ, Golden WL, Harding MA, Theodorescu D. Genetic and phenotypic changes associated with the acquisition of tumorigenicity in human bladder cancer. Genes Chromosomes Cancer 2000 Mar; 27(3): 252–63.

30. Wu Y, McRoberts K, Berr SS, et al. Neuromedin U is regulated by the metastasis suppressor RhoGDI2 and is a novel promoter of tumor formation, lung metastasis and cancer cachexia. Oncogene 2007 Feb 1; 26(5): 765–773.

31. Chaffer CL, Brennan JP, Slavin JL, et al. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 2006 Dec; 66(23): 11271–11278.

32. Makridakis M, Gagos S, Petrolekas A, et al. Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer. Proteomics 2009 Jan; 97–98.

33. Karam JA, Huang S, Fan J, et al. Upregulation of TRAG3 gene in urothelial carcinoma of the bladder. Int J Cancer 2011 Jun; 128(12): 2823–2832.

34. Moscow JA, Schneider E, Sikic BI, Morrow CS, Cowan KH. Drug resistance and its clinical circumvention. In: Holland JF, Frei E, eds. Cancer Medicine. 8. ed. Shelton: PMPH-USA; 2010: 597–610.

35. Bambury RM, Rosenberg JE. Advanced urothelial carcinoma: overcoming treatment resistance through novel treatment approaches. Front Pharmacol 2013 Feb; 4: 1–7.

36. Seemann O, Muscheck M, Siegsmund M, et al. Establishnent and characterization of a multidrug- resistant human bladder carcinoma cell line RT112/D21. Urol Res 1995; 22: 353–360.

37. Usansky JI, Liebert M, Wedemeyer G, Grossman HB, Wagner JG. The uptake and efflux of doxorubicin by a sensitive human bladder cancer cell line and its doxorubicin-resistant subline. Sel Cancer Ther 1991 Winter; 7(4): 139–150.

38. Tanaka M, Grossman HB. In vivo gene therapy of human bladder cancer with PTEN suppresses tumor growth, downregulates phosphorylated Akt, and increases sensitivity to doxorubicin. Gene Ther 2003 Sep; 10(19): 1636–1642.

39. Hong JH, Lee E, Hong J, Shin YJ, Ahn H. Antisense Bcl2 oligonucleotide in cisplatin-resistant bladder cancer cell lines. BJU Int 2002 Jul; 90(1): 113–117

40. Muramaki M, So A, Hayashi N, et al. Chemosensitization of gemcitabine-resistant human bladder cancer cell line both in vitro and in vivo using antisense oligonucleotide targeting the anti-apoptotic gene, clusterin. BJU Int 2009 Feb; 103(3): 384–390.

41. Siegsmund MJ, Marx C, Seemann O, et al. Cisplatin-resistant bladder carcinoma cells: enhanced expression of metallothioneins. Urol Res 1999 Jun; 27(3): 157–163.

42. Byun SS, Kim SW, Choi H, Lee C, Lee E. Augmentation of cisplatin sensitivity in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. BJU Int 2005 May; 95(7): 1086–1090.

43. Hour TC, Lai YL, Kuan CI, et al. Transcriptional up-regulation of SOD1 by CEBPδ: a potential target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol 2010 Aug 1; 80(3): 325–334.

44. Kim JK, Kim KD, Lee E, et al. Up-regulation of Bfl-1/A1 via NF-kappaB activation in cisplatin-resistant human bladder cancer cell line. Cancer Lett 2004 Aug 20; 212(1): 61–70.

45. Lee S, Yoon CY, Byun SS, Lee E, Lee SE. The role of c-FLIP in cisplatin resistance of human bladder cancer cells. J Urol 2013 Jun; 189(6): 2327–2334.

46. Yu HM, Wang TC. Mechanism of cisplatin resistance in human urothelial carcinoma cells. Food Chem Toxicol 2012 May; 50(5): 1226–1237.

47. Tsunoda T, Koga H, Yokomizo A, et al. Inositol 1,4,5-trisphosphate (IP3) receptor type1 (IP3R1) modulates the acquisition of cisplatin resistance in bladder cancer cell lines. Oncogene 2005 Feb; 24(8): 1396–1402.

48. Miura N, Takemori N, Kikugawa T, et al. Adseverin: a novel cisplatin-resistant marker in the human bladder cancer cell line HT1376 identified by quantitative proteomic analysis. Mol Oncol 2012 Jun; 6(3): 311–322.

49. Meng Q, Lei T, Zhang M, et al. Identification of proteins differentially expressed in adriamycin-resistant (pumc-91/ADM) and parental (pumc-91) human bladder cancer cell lines by proteome analysis. J Cancer Res Clin Oncol 2013 Mar; 139(3): 509–519.

50. Greife A, Tukova J, Steinhoff C, et al. Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation. Tumour Biol. 2015 May; 36(5): 3293–3300.

51. Yeganeh B, Wiechec E, Ande SR. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 2014 Jul; 143(1): 87–110.

52. Clendening JW, Penn LZ. Targeting tumor cell metabolism with statins. Oncogene 2012 Nov; 31(48): 4967–4978.

53. Kornblau SM, Banker DE, Stirewalt D, et al. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study. Blood 2007 Apr; 109(7): 2999–3006.

Paediatric urologist Nephrology Urology
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account