#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Melatonin as a structural template in the development of novel drugs for neurodegenerative disorders


Authors: Jan Korábečný
Published in: Čes. slov. Farm., 2018; 67, 51-58
Category: Review Articles

Overview

Melatonin is a key regulatory hormone produced mainly in the pineal gland. In the recent years, melatonin contribution to neurodegenerative disorders has dramatically increased when inspecting its favorable pharmacological profile. Its levels were found to be decreased during aging. Data from clinical studies point out to its positive outcome not only in improving the quality of sleep but it also exerts anti-inflammatory and antioxidant profile. Moreover, it was found as an effective neuroprotective agent. Current study summarizes the experimental data from basic research of medicinal chemistry field devoted to melatonin. Particular emphasis is directed toward melatonin derivatives with multipotent profile affecting concomitantly several pathological hallmarks of the neurodegenerative disorders.

Key words:

acetylcholinesterase • Alzheimer’s disease • antioxidant • butyrylcholinesterase • melatonin • neurodegenerative disorders


Sources

  1.   Menendez‐Pelaez A., Reiter R. J. Distribution of Melatonin in Mammalian Tissues: The Relative Importance of Nuclear versus Cytosolic Localization. J. Pineal Res. 1993; 15, 59–69.

  2.   Sánchez-Barceló E. J., Mediavilla M. D., Tan D. X., Reiter R. J. Clinical Uses of Melatonin: Evaluation of Human Trials. Curr. Med. Chem. 2010; 17, 2070–2095.

  3.   Hardeland R. Melatonin Metabolism in the Central Nervous System. Curr. Neuropharmacol. 2010; 8, 168–181.

  4.   Albertini M. C., Radogna F., Accorsi A., Uguccioni F., Paternoster L., Cerella C., de Nicola M., D’Alessio M., Bergamaschi A., Magrini A., Ghibelli L. Intracellular pro-oxidant activity of melatonin deprives U937 cells of reduced glutathione without affecting glutathione peroxidase activity. Ann. N. Y. Acad. Sci. 2006; 1091, 10–16.

  5.   Reiter R. J., Acuña-Castroviejo D., Tan D. X., Burkhardt S. Free radical-mediated molecular damage. mechanisms for the protective actions of melatonin in the central nervous system. Ann. N. Y. Acad. Sci. 2001; 939, 200–215.

  6.   Reiter R. J., Tan D., Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech. Ageing Dev. 2002; 123, 1007–1019.

  7.   Reiter R. J., Tan D.-X., Mayo J. C., Sainz R. M., Leon J., Czarnocki Z. Melatonin as an antioxidant: Biochemical mechanisms and pathophysiological implications in humans. Acta Biochim. Pol. 2003; 50, 1129–1146.

  8.   Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J. Pineal Res. 2013; 55, 325–356.

  9.   Hardeland R., Coto-Montes A. New vistas on oxidative damage and aging. Open Biol. J. 2010; 3, 39–52.

10.   Armstrong S. M., Redman J. R. Melatonin: a chronobiotic with anti-aging properties? Med. Hypotheses 1991; 34, 300–309.

11.   Morphy R., Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005; 48, 6523–6543.

12.   Spilovska K., Zemek F., Korabecny J., Nepovimova E., Soukup O., Windisch M., Kuca K. Adamantane – a lead structure for drugs in clinical practice. Curr. Med. Chem. 2016; 23, 3245–3266.

13.   Davies P., Maloney A. J. Selective Loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2, 1403.

14.   Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014; 13, 759–774.

15.   Korábečný J., Nepovimová E., Cikánková T., Špilovská K., Vašková L., Mezeiová E., Kuča K., Hroudová J. Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience 2018; 370, 191–206.

16.   Hardy J., Selkoe D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297, 353–356.

17.   Liao D., Miller E. C., Teravskis P. J. Tau acts as a mediator for Alzheimer’s disease-related synaptic deficits. Eur. J. Neurosci. 2014; 39, 1202–1213.

18.   Bolognin S., Drago D., Messori L., Zatta P. Chelation therapy for neurodegenerative diseases. Med. Res. Rev. 2009; 29, 547–570.

19.   Rosini M., Simoni E., Milelli A., Minarini A., Melchiorre C. Oxidative stress in Alzheimer’s disease: Are we connecting the dots? J. Med. Chem. 2014; 57, 2821–2831.

20.   Korábecný J., Hrubá E., Soukup O., Zemek F., Musílek K., Nepovímová E., Spilovská K., Opletalová V., Kuca K. Intended pharmacotherapeutical approaches of Alzheimer’s disease therapy. Ces. slov. Farm. 2012; 61, 4–10.

21.   Cavalli A., Bolognesi M. L., Minarini A., Rosini M., Tumiatti V., Recanatini M., Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008; 51, 347–372.

22.   Prati F., Cavalli A., Bolognesi M. L. Navigating the chemical space of multitarget-directed ligands: from hybrids to fragments in Alzheimer’s disease. Mol. Basel Switz. 2016; 21, 466.

23.   Muñoz-Ruiz P., Rubio L., García-Palomero E., Dorronsoro I., del Monte-Millán M., Valenzuela R., Usán P., de Austria C., Bartolini M., Andrisano V., Bidon-Chanal A., Orozco M., Luque F. J., Medina M., Martínez A. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J. Med. Chem. 2005; 48, 7223–7233.

24.   Inestrosa N. C., Alvarez A., Pérez C. A., Moreno R. D., Vicente M., Linker C., Casanueva O. I., Soto C., Garrido J. Acetylcholinesterase Accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16, 881–891.

25.   Korábečný J., Spilovská K., Benek O., Musílek K., Soukup O., Kuča K. Tacrine and its derivatives in the therapy of Alzheimers disease. Ces. slov. Farm. 2012; 61, 210–221.

26.   Recanatini M., Cavalli A., Belluti F., Piazzi L., Rampa A., Bisi A., Gobbi S., Valenti P., Andrisano V., Bartolini M., Cavrini V. SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory Activity, QSAR, and structure-based CoMFA of tacrine analogues. J. Med. Chem. 2000; 43, 2007–2018.

27.   Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 2013; 15.

28.   Minic J., Chatonnet A., Krejci E., Molgó J. Butyrylcholinesterase and acetylcholinesterase activity and quantal transmitter release at normal and acetylcholinesterase knockout mouse neuromuscular junctions. Br. J. Pharmacol. 2003; 138, 177–187.

29.   Rodríguez-Franco M. I., Fernández-Bachiller M. I., Pérez C., Hernández-Ledesma B., Bartolomé B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem. 2006; 49, 459–462.

30.   Sofic E., Rimpapa Z., Kundurovic Z., Sapcanin A., Tahirovic I., Rustembegovic A., Cao G. Antioxidant capacity of the neurohormone melatonin. J. Neural Transm. Vienna Austria 1996 2005; 112, 349–358.

31.   Di L., Kerns E. H., Fan K., McConnell O. J., Carter G. T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003; 38, 223–232.

32.   López-Iglesias B., Pérez C., Morales-García J. A., Alonso-Gil S., Pérez-Castillo A., Romero A., López M. G., Villarroya M., Conde S., Rodríguez-Franco M. I. New melatonin-n,n-dibenzyl(n-methyl)amine hybrids: potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease. J. Med. Chem. 2014; 57, 3773–3785.

33.   Di Pietro O., Viayna E., Vicente-García E., Bartolini M., Ramón R., Juárez-Jiménez J., Clos M. V., Pérez B., Andrisano V., Luque F. J., Lavilla R., Muñoz-Torrero D. 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies. Eur. J. Med. Chem. 2014; 73, 141–152.

34.   Wang J., Wang Z.-M., Li X.-M., Li F., Wu J.-J., Kong L.-Y., Wang X.-B. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin. Bioorg. Med. Chem. 2016; 24, 4324–4338.

35.   Zhu J. T. T., Choi R. C. Y., Chu G. K. Y., Cheung A. W. H., Gao Q. T., Li J., Jiang Z. Y., Dong T. T. X., Tsim K. W. K. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing beta-amyloid-induced cell death. J. Agric. Food Chem. 2007; 55, 2438–2445.

36.   Verghese J. Isolation of curcumin from Curcuma Longa L. Rhizome. Flavour Fragr. J. 1993; 8, 315–319.

37.   Katsuyama Y., Kita T., Funa N., Horinouchi S. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma Longa. J. Biol. Chem. 2009; 284, 11160–11170.

38.   Ammon H. P., Wahl M. A. Pharmacology of Curcuma Longa. Planta Med. 1991; 57, 1–7.

39.   Dairam A., Fogel R., Daya S., Limson J. L. Antioxidant and iron-binding properties of curcumin, capsaicin, and s-allylcysteine reduce oxidative stress in rat brain homogenate. J. Agric. Food Chem. 2008; 56, 3350–3356.

40.   Park S.-Y., Kim D. S. H. L. Discovery of natural products from Curcuma Longa that protect cells from beta-amyloid insult: A drug discovery effort against Alzheimer’s disease. J. Nat. Prod. 2002; 65, 1227–1231.

41.   Kim H., Park B.-S., Lee K.-G., Choi C. Y., Jang S. S., Kim Y.-H., Lee S.-E. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J. Agric. Food Chem. 2005; 53, 8537–8541.

42.   Shimmyo Y., Kihara T., Akaike A., Niidome T., Sugimoto H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 2008; 19, 1329–1333.

43.   Derosa G., Maffioli P., Simental-Mendía L. E., Bo S., Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2016; 111, 394–404.

44.   Tang M., Taghibiglou C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimers Dis. JAD 2017; 58, 1003–1016.

45.   Chojnacki J. E., Liu K., Yan X., Toldo S., Selden T., Estrada M., Rodríguez-Franco M. I., Halquist M. S., Ye D., Zhang S. Discovery of 5-(4-Hydroxyphenyl)-3-Oxo-Pentanoic Acid [2-(5-Methoxy-1H-Indol-3-Yl)-Ethyl]-Amide as a neuroprotectant for Alzheimer’s disease by hybridization of curcumin and melatonin. ACS Chem. Neurosci. 2014; 5, 690–699.

46.   Gerenu G., Liu K., Chojnacki J. E., Saathoff J. M., Martínez-Martín P., Perry G., Zhu X., Lee H.-G., Zhang S. Curcumin/melatonin hybrid 5-(4-Hydroxy-Phenyl)-3-Oxo-Pentanoic Acid [2-(5-Methoxy-1H-Indol-3-Yl)-Ethyl]-Amide ameliorates AD-like pathology in the APP/PS1 mouse model. ACS Chem. Neurosci. 2015; 6, 1393–1399.

47.   Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013; 53, 401–426.

48.   Buendia I., Navarro E., Michalska P., Gameiro I., Egea J., Abril S., López A., González-Lafuente L., López M. G., León R. New Melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med. Chem. 2015; 7, 1961–1969.

49.   Pähkla R., Zilmer M., Kullisaar T., Rägo L. Comparison of the antioxidant activity of melatonin and pinoline in vitro. J. Pineal Res. 1998; 24, 96–101.

50.   Susilo R., Rommelspacher H. Formation of 1-methyl-beta-carbolines in rats from their possible carboxylic acid precursor. Naunyn. Schmiedebergs Arch. Pharmacol. 1988; 337, 566–571.

51.   de la Fuente Revenga M., Pérez C., Morales-García J. A., Alonso-Gil S., Pérez-Castillo A., Caignard D.-H., Yáñez M., Gamo A. M., Rodríguez-Franco M. I. Neurogenic potential assessment and pharmacological characterization of 6-Methoxy-1,2,3,4-Tetrahydro-β-Carboline (Pinoline) and melatonin-pinoline hybrids. ACS Chem. Neurosci. 2015; 6, 800–810.

52.   Mason R. P., Olmstead E. G., Jacob R. F. Antioxidant activity of the monoamine oxidase B inhibitor lazabemide. Biochem. Pharmacol. 2000; 60, 709–716.

53.   Fiedorowicz J. G., Swartz K. L. The role of monoamine oxidase inhibitors in current psychiatric practice. J. Psychiatr. Pract. 2004; 10, 239–248.

54.   Xie Q., Wang H., Xia Z., Lu M., Zhang W., Wang X., Fu W., Tang Y., Sheng W., Li W., Zhou W., Zhu X., Qiu Z., Chen H. Bis-(−)-nor-meptazinols as novel nanomolar cholinesterase inhibitors with high inhibitory potency on amyloid-β aggregation. J. Med. Chem. 2008; 51, 2027–2036.

55.   Cheng S., Zheng W., Gong P., Zhou Q., Xie Q., Yu L., Zhang P., Chen L., Li J., Chen J., Chen H., Chen H. (−)-meptazinol-melatonin hybrids as novel dual inhibitors of cholinesterases and amyloid-β aggregation with high antioxidant potency for Alzheimer’s therapy. Bioorg. Med. Chem. 2015; 23, 3110–3118.

56.   Benchekroun M., Romero A., Egea J., León R., Michalska P., Buendía I., Jimeno M. L., Jun D., Janockova J., Sepsova V., Soukup O., Bautista-Aguilera O. M., Refouvelet B., Ouari O., Marco-Contelles J., Ismaili L. The antioxidant additive approach for Alzheimer’s disease therapy: new ferulic (lipoic) acid plus melatonin modified tacrines as cholinesterases inhibitors, direct antioxidants, and nuclear factor (erythroid-derived 2)-like 2 activators. J. Med. Chem. 2016; 59, 9967–9973.

57.   Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., Trejtnar F., Pohanka M., Drtinova L., Pavlik M., Tobin G., Kuca K. A Resurrection of 7-MEOTA: A comparison with tacrine. Curr. Alzheimer Res. 2013; 10, 893–906.

58.   Maresova P., Klimova B., Novotny M., Kuca K. Alzheimer’s and Parkinson’s diseases: expected economic impact on Europe-a call for a uniform european strategy. J. Alzheimers Dis. JAD 2016; 54, 1123–1133.

Labels
Pharmacy Clinical pharmacology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#