#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effectiveness of phytotherapy in supportive treatment of type 2 diabetes mellitus Billberry (Vaccinium myrtillus)


Authors: David Koupý;  Hana Kotolová;  Jana Kučerová
Authors‘ workplace: Vojenská nemocnice Brno, Interní oddělení, Brno
Published in: Čes. slov. Farm., 2015; 64, 3-6
Category: Review Articles

Overview

The billberry is well-known for its tasty blue-dyeing fruits. Historically the leaves and fruits were used to treat diabetes, cardiovascular diseases, dementia and cancer. Antidiabetic properties of the plant are attributed mostly to the content of anthocyanins and polyphenols. These compounds have proven their antidiabetic potential in various studies. Their mechanism of action is an increase in insulin secretion (anthocyanin pelargonidin), reduction of insulin resistance (anthocyanin cyanidin-3-glucoside), glucose resorption from the GIT (polyphenols) and enhancement of beta-cells regeneration. Besides these effects, anthocyanins contribute to the improvement of the lipid spectrum and have antioxidant, anti-inflammatory and cardioprotective activities. Antidiabetic effects of anthocyanin cyanidin-3-galactoside were compared to acarbose (synergistic effect), hypocholesterolemic activity of cyanidin-3-O-glucoside to atorvastatin (synergistic effect) and hypolipidemic properties of blueberry leaf extract to ciprofibrate (extract has a lower effect). However, in many preclinical and clinical studies different species of the Vaccinium genus and other plants with asimilar effect as the billberry were also assessed. Therefore, in order to convincingly assess the efficacy and safety of blueberry herbal medicines more studies are necessary. Such studies should shed light into the variety of anthocyanins, their particular effects and optimal doses and compare their effects with intake of foods generally rich in anthocyanins.

Key words:
billberry • Vaccinium myrtillus • diabetes mellitus • phytotherapy • antocyanines


Sources

1. Mika K. Fytoterapia pre lekárov. Martin: Osveta 1991.

2. Tomko J. Farmakognózia. Martin: Osveta 1999.

3. Kong J. M., Chia L. S., Goh N. K., Chia T. F., Brouillar R. Analysis and biological activities of anthocyanins. Phytochemistry 2003; 64, 923–933.

4. Castañeda-Ovando A., Pacheco-Hernández M. L., Páez-Hernández M. E., Rodriguez J. A., Galan-Vidal C. A. Chemical studies of anthocyanins: a review. Food Chem. 2009; 113, 859–871.

5. Benzie I. F. F., Wachtel-Galor S. Herbal medicine: biomolecular and clinical aspects. CRC Press: Boca Raton (FL) 2011.

6. Jayaprakasam B., Vareed S. K., Olson L. K., Nair M. G. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 2005; 53, 28–31.

7. Horská K., Kučerová J., Suchý P., Kotolová H. Metabolic syndrome – dysregulation of adipose tissue endocrine function. Čes. slov. Farm. 2014; 63, 152–159.

8. Kučerová J., Babinská Z., Horská K., Kotolová H. The common pathophysiology underlying the metabolic syndrome, schizophrenia and depression. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2014; doi: 10.5507/bp.2014.060.

9. Tsuda T., Horio F., Uchida K., Aoki H., Osawa T. Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003; 133, 2125–2130.

10. Tsuda T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J. Agric. Food Chem. 2008; 56, 642–646.

11. DeFuria J., Bennett G., Strissel K. J., Perfield J. W., Milbury P. E., Greenberg A. S., Obin M. S. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr. 2009; 139, 1510–1516.

12. Sasaki R., Nishimura N., Hoshino H., Isa Y., Kadowaki M., Ichi T., Tanaka A., Nishiumi S., Fukuda I., Ashida H., Horio F., Tsuda T. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol. 2007; 74, 1619–1627.

13. Nizamutdinova I. T., Jin Y. C., Chung J. I., Shin S. C., Lee S. J., Seo H. G., Lee J. H., Chang K. C., Kim H. J. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol. Nutr. Food Res. 2009; 53, 1419–1429.

14. Takikawa M., Inoue S., Horio F., Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr. 2010; 140, 527–533.

15. McDougall G. J., Kulkarni N. N., Stewart D. Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 2008; 34, 73–80.

16. Martineau L. C., Couture A., Spoor D., Benhaddou-Andaloussi A., Harris C., Meddah B., Leduc C., Burt A., Vuong T., Mai Le P., Prentki M., Bennett S. A., Arnason J. T., Haddad P. S. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 2006; 13, 612–623.

17. Pool-Zobel B. L., Bub A., Schroder N., Rechkemmer G. Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. European J. Nutr. 1999; 38, 227–234.

18. Kay C. D., Holub B. J. The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. Br. J. Nutr. 2002; 88, 389–98.

19. Valentova K., Ulrichova J., Cvak L., Simanek V. Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chem. 2006; 101, 912–917.

20.Feshani A. M., Kouhsari S. M., Mohammadi S. Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J. Ethnopharmacol. 2011; 133, 67–74.

21. Bornseka S. M., Zibernab L., Polaka T. Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chem. 2012; 134, 1878–1884.

22. Cignarella A., Nastasi M., Cavalli E., Puglisi L. Novel lipid-lowering properties of Vaccinium myrtillus L. leaves, a traditional antidiabetic treatment, in several models of rat dyslipidaemia: a comparison with ciprofibrate. Thromb. Res. 1996; 84, 311–322.

23. Adisakwattana S., Charoenlertkul P., Yibchok-Anun S. Alpha-glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J. Enzyme Inhib. Med. Chem. 2009; 24, 65–69.

24. Zhou Z., Nair M. G., Claycombe K. J. Synergistic inhibition of interleukin-6 production in adipose stem cells by tart cherry anthocyanins and atorvastatin. Phytomedicine 2012; 19, 878–881.

25. Prior R. L., Wilkes S. E., Rogers T. R., Khanal R. C., Wu X., Howard L. R. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J. Agric. Food Chem. 2010; 58: 3970–3976.

26. Diabetan-spc.pdf. SÚKL. http://www.sukl.cz/modules/medication/search.php (staženo 9. února 2015).

27. Koupý D., Kotolová H., Kučerová J. Současné fytoterapeutické možnosti v léčbě diabetes mellitus. Prakt. Lékáren. 2014; 10, 4.

28. Kašparová M. Borůvka černá (Vaccinium myrtillus L.). Prakt. Lékáren. 2009; 5, 143–145.

29. Xiao J., Kai G., Yamamoto K., Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr. 2013; 53, 818–836.

30. Williamson G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 2013; 57, 48–57.

Labels
Pharmacy Clinical pharmacology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#