The Use of Transcranial Sonography at Neuro-psychiatry Interface

Authors: P. Šilhán 1,2;  D. Školoudík 3,4;  M. Jelínková 3,5;  M. Hýža 1,2;  J. Valečková 6;  D. Perničková 1,2;  L. Hosák 7
Authors‘ workplace: Oddělení psychiatrické, FN Ostrava 1;  Katedra neurologie a psychiatrie, LF OU v Ostravě 2;  Neurologická klinika LF OU a FN Ostrava 3;  Ústav ošetřovatelství, FZV UP v Olomouci 4;  Neurologické oddělení, Nemocnice s poliklinikou Karviná-Ráj 5;  Oddělení lékařské genetiky, FN Ostrava 6;  Psychiatrická klinikaLF UK a FN Hradec Králové 7
Published in: Cesk Slov Neurol N 2016; 79/112(6): 649-654
Category: Review Article


The use of neuroimaging methods is one of the pillars of re-convergence of neurology and psychiatry. Transcranial ultrasonography of the brainstem parenchyma is a method widely clinically used in neurology while it has also started to bear first fruit in the field of mental disorders. Sonographic imaging mainly concerns structures of the brainstem. Reduced echogenicity of the brainstem raphe is related to unipolar major depressive disorder, the majority of organic depressive disorders and several anxiety disorders but not bipolar affective disorder. According to initial results, this could be the marker of good efficacy of serotoninergic antidepressants. Hyperechogenicity of substantia nigra, typical for Parkinson’s disease, has also been frequently found in depressive states, and suggests shared etiopathogenic background. In addition, it is related to severity of medication-induced extrapyramidal syndrome in psychiatry. Verification and extension of these findings may provide clinically important markers for discrimination between unipolar and bipolar depression, a more personalized choice of an antidepressant and prediction of the risk of antipsychotic-induced extrapyramidal adverse effects. This article presents a detailed overview of brain sonographic findings when used at the interface between neurology and psychiatric border.

Key words:
transcranial ultrasonography – raphe nuclei – substantia nigra – Parkinson’s disease – mental disorders – depression

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


1. Viták T, Seidl Z, Burgetová A. Část obecná. In: Seidl Z, Burgetová A, Hof­fman­nová E, eds. Radiologie pro studium a praxi. 1. vyd. Praha: Grada Publish­ing 2012:21– 102.

2. Walter U, Kanowski M, Kaufmann J, et al. Contemporary ultrasound systems al­low high-resolution transcranial imag­ing of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage 2008;40(2):551– 8. doi: 10.1016/ j.neuroimage.2007.12.019.

3. Huber H. Transcranial Sonography –  Anatomy. Int Rev Neurobio­l 2010;90:35– 45. doi: 10.1016/ S0074-7742(10)90003-2.

4. Školoudík D, Jelínková M, Blahuta J, et al. Transcranial sonography of the substantia nigra: digital image anal­ysis. AJNR Am J Neuroradiol 2014;35(12):2273– 8. doi: 10.3174/ ajnr.A4049.

5. Stern MB. Introductory Remarks on the History and Cur­rent Applications of TCS. Int Rev Neurobio­l 2010;90:2– 5. doi: 10.1016/ S0074-7742(10)90001-9.

6. Berg D, Merz B, Reiners K, et al. Five-year fol­low-up study of hyperechogenicity of the substantia nigra in Parkinson‘s disease. Mov Disord 2005;20(3):383– 5.

7. Gaenslen A, Berg D. Early Dia­gnosis of Parkinson’s Disease. Int Rev Neurobio­l 2010;90:81– 92. doi: 10.1016/ S0074-7742(10)90006-8.

8. Behnke S, Runkel A, Kas­sar HA, et al. Long-term course of substantia nigra hyperechogenicity in Parkinson‘s disease. Mov Disord 2013;28(4):455– 9. doi: 10.1002/ mds.25193.

9. Berg D, Roggendorf W, Schröder U, et al. Echogenicity of the substantia nigra: as­sociation with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 2002;59(6):999– 1005.

10. Ruprecht-Dörfler P, Berg D, Tucha O, et al. Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson‘s disease. Neuroimage 2003;18(2):416– 22.

11. Berg D, Seppi K, Behnke S, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson dis­ease: a 37-month 3-center study of 1,847 older persons. Arch Neurol 2011;68(7):932– 7. doi: 10.1001/ archneurol.2011.141.

12. Walter U. Transcranial sonography of the cerebral parenchyma: update on clinical­ly relevant applications. Perspect Med 2012;1:334– 43.

13. Růžička E. Neurodegenerativní onemocnění mozku. In: Bednařík J, Ambler Z, Růžička E (eds). Klinická neurologie –  část speciální I. 1. vyd. Praha: Triton 2010:539– 707.

14. Bouwmans AEP, Vlaar AM, Srulijes K, et al. Trans­cranial sonography for the discrimination of idio­pathic Parkinson’s disease from the atypical parkinsonian syndromes. Int Rev Neurobio­l 2010;90:121– 46. doi: 10.1016/ S0074-7742(10)90009-3.

15. Walter U, Dres­sler D, Wolters A, et al. Sonographic discrimination of dementia with Lewy bodies and Parkinson‘s disease with dementia. J Neurol 2006;253(4):448– 54.

16. Tsai CF, Wu RM, Huang YW, et al. Transcranial color-coded sonography helps dif­ferentiation between idiopathic Parkinson‘s disease and vascular parkinsonism. J Neurol 2007;254(4):501– 7.

17. Kim JS, Oh YS, Kim YI, et al. Transcranial sonography (TCS) in Parkinson’s disease (PD) and es­sential tremor (ET) in relation with putative premotor symp­toms of PD. Arch Gerontol Geriatr 2012;54(3):e436– 9. doi: 10.1016/ j.archger.2012.01.001.

18. Godau J, Sojer M. Transcranial sonography in restless legs syndrome. Int Rev Neurobio­l 2010;90:199– 215. doi: 10.1016/ S0074-7742(10)90015-9.

19. Krogias C, Eyd­ing J, Postert T. Transcranial sonography in Huntington‘s disease. Int Rev Neurobio­l 2010;90:237– 57. doi: 10.1016/ S0074-7742(10)90017-2.

20. Svetel M, Mijajlović M, Tomić A, et al. Transcranial sonography in Wilson‘s disease. Parkinsonism Relat Disord 2012;18(3):234– 8. doi: 10.1016/ j.parkreldis.2011.10.007.

21. Mijajlovic MD. Transcranial sonography in depres­sion. Int Rev Neurobio­l 2010;90:259– 72. doi: 10.1016/ S0074-7742(10)90018-4.

22. Becker G, Berg D, Lesch KP, et al. Basal limbic system alteration in major depres­sion: a hypothesis supported by transcranial sonography and MRI findings. Int J Neuropsychopharmacol 2001;4(1):21– 31.

23. Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat 2003;26(4):331– 43.

24. Mijajlovic MD. Transcranial sonography in psychiatric diseases. Perspect Med 2012;1:357– 61.

25. Matthews PR, Har­rison PJ. A morphometric, im­munohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depres­sion, bipolar disorder, schizophrenia, and suicide. J Af­fect Disord 2012;137(1– 3):125– 34. doi: 10.1016/ j.jad.2011.10.043.

26. Lee HY, Tae WS, Yoon HK, et al. Demonstration of decreased gray matter concentration in the midbrain encompas­s­ing the dorsal raphe nucleus and the limbic subcortical regions in major depres­sive disorder: an optimized voxel-based morphometry study. J Af­fect Disord 2011;133(1– 2):128– 36. doi: 10.1016/ j.jad.2011.04.006.

27. Becker G, Struck M, Bogdahn U, et al. Echogenicity of the brainstem raphe in patients with major depres­sion. Psychiatry Res 1994;55(2):75– 84.

28. Becker G, Becker T, Struck M, et al. Reduced echogenicity of brainstem raphe specific to unipolar depres­sion: a transcranial color-coded real-time sonography study. Biol Psychiatry 1995;38(3):180– 4.

29. Steele JD, Bastin ME, Wardlaw JM, et al. Pos­sible structural abnormality of the brainstem in unipolar depres­sive il­lnes­s: a transcranial ultrasound and dif­fusion tensor magnetic resonance imag­ing study. J Neurol Neurosurg Psychiatry 2005;76(11):1510– 5.

30. Walter U, Prudente-Mor­ris­sey L, Herpertz SC, et al. Relationship of brainstem raphe echogenicity and clinical findings in depres­sive states. Psychiatry Res 2007;155(1):67– 73.

31. Hoeppner J, Prudente-Mor­ris­sey L, Herpertz SC, et al. Substantia nigra hyperechogenicity in depres­sive subjects relates to motor asym­metry and impaired word fluency. Eur Arch Psychiatry Clin Neurosci 2009;259(2):92– 7. doi: 10.1007/ s00406-008-0840-9.

32. Budisic M, Karlovic D, Trkanjec Z, et al. Brainstem raphe lesion in patients with major depres­sive disorder and in patients with suicidal ideation recorded on trans­cranial sonography. Eur Arch Psychiatry Clin Neurosci 2010;260(3):203– 8. doi: 10.1007/ s00406-009-0043-z.

33. Ghourchian S, Zamani B, Poorkosary K, et al. Raphe nuclei echogenicity changes in major depres­sion. Med J Islam Repub Iran 2014;28:9.

34. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies of depres­sion in Parkinson‘s disease. Mov Disord 2008;23(2):183– 9.

35. Lieberman A. Depres­sion in Parkinson‘s disease –  a review. Acta Neurol Scand 2006;113(1):1– 8.

36. Walter U, Hoeppner J, Prudente-Mor­ris­sey L, et al. Parkinson‘s disease-like midbrain sonography abnormalities are frequent in depres­sive disorders. Brain 2007;130(7):1799– 807.

37. Walter U, Školoudík D, Berg D. Transcranial sonography findings related to non-motor features of Parkinson‘s disease. J Neurol Sci 2010;289:123– 7. doi: 10.1016/ j.jns.2009.08.027.

38. Krogias C, Hof­fmann K, Eyd­ing J, et al. Evaluation of basal ganglia, brainstem raphe and ventricles in bipolar disorder by transcranial sonography. Psychiatry Res 2011;194(2):190– 7. doi: 10.1016/ j.pscychresns.2011.04.002.

39. Šilhán P, Jelínková M, Walter U, et al. Transcranial sonography of brainstem structures in panic disorder. Psychiatry Res 2015;234(1):137– 43. doi: 10.1016/ j.pscychresns.2015.09.010.

40. Beck AT, Epstein N, Brown G, et al. An inventory for measur­ing clinical anxiety: Psychometric properties. J Consult Clin Psychol 1988;56(6):893– 7.

41. Mavrogiorgou P, Nalato F, Meves S, et al. Transcranial sonography in obses­sive-compulsive disorder. J Psychiatr Res 2013;47(11):1642– 8. doi: 10.1016/ j.jpsychires.2013.07.020.

42. Berg D, Jabs B, Merschodorf U, et al. Echogenicity of substantia Nigra Determined by Transcranial Ultrasound cor­relates with severity of parkinsonian symp­toms induced by neuroleptic therapy. Biol Psychiatry 2001;50(6):463– 7.

43. Wol­lenweber FA, Schomburg R, Probst M, et al. Width of the third ventricle as­ses­sed by transcranial sonography can monitor brain atrophy in a time and cost-ef­fective man­ner –  results from a longitudinal study on 500 subjects. Psychiatry Res 2011;191(3):212– 6. doi: 10.1016/ j.pscychresns.2010.09.010.

44. Krauel K, Feldhaus HC, Simon A, et al. Increased echogenicity of the substantia nigra in children and adolescents with attention-deficit/ hyperactivity disorder. Biol Psychiatry 2010;68(4):352– 8. doi: 10.1016/­psych.2010.01.013.

45. Iova A, Garmashov A, Androuchtchenko N, et al. Postnatal decrease in substantia nigra echogenicity. Implications for the pathogenesis of Parkinson‘s disease. J Neurol 2004;251(12):1451– 4.

46. Movsas TZ, Pinto-Martin JA, Whitaker AH, et al. Autism spectrum disorder is as­sociated with ventricular enlargement in a low birth weight population. J Pediatr 2013;163(1):73– 8. doi: 10.1016/ j.jpeds.2012.12.084.

47. Bradstreet JJ, Pacini S, Ruggiero M. A New Metho-dology of View­ing Extra-Axial Fluid and CorticalAbnormalities in Children with Autism via Transcranial Ultrasonography. Front Hum Neurosci 2014;7:934. doi: 10.3389/ fnhum.2013.00934.

Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 6

2016 Issue 6

Most read in this issue
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account