#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Can affecting of subchondral bone slow the progression of osteoarthritis?


Authors: Pavelka Karel
Authors‘ workplace: Revmatologický ústav, Praha
Published in: Clinical Osteology 2019; 24(2): 62-67
Category:

Overview

In the introduction, the author briefly discusses the problem of the pathogenesis of osteoarthritis (OA) and the identification of potential targets for therapeutic intervention, including the affecting of subchondral bone. The next section presents the methodology for evaluating the structural progression of OA. Primarily the methodology for standardization of the classical X-ray photographs is discussed, as well as the possibilities of magnetic resonance imaging. The following section focuses on the therapy of OA and the division into the symptomatic and the structure modifying treatments. Also new therapeutic approaches are described which are divided into 3 groups: preparations affecting catabolic and anabolic functions in cartilage, a group of drugs affecting inflammation, and preparations affecting the remodelling of subchondral bone. The studies conducted with the drugs of the third group mentioned are discussed in more detail. Studies of strontium ranelate (SEKOIA) have brought positive results, in terms of both symptomatic and structural effects, however the drug has been withdrawn from research due to an increased cardiovascular risk. Further, three studies of bisphosphonates are discussed which have produced inconsistent results. In conclusion, two studies of calcitonin were discussed that did not reach the primary objective after 2 years, still one of them had a proven effect on the volume of articular cartilage. Although preclinical studies show a possible beneficial effect of drugs modifying bone metabolism on the process of slowing cartilage degene­ration, no clinical study has positively demonstrated this.

Keywords:

osteoarthritis – bisphosphonates – calcitonin


Sources
  1. Cross M, Smith E, Hoy D et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 2014; 73(7): 1323–1330. Dostupné z DOI: <http://dx.doi.org/10.1136/annrheumdis-2013–204763>.
  2. Wang M, Shen J, Jin H et al. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann N Y Acad Sci 2011; 1240: 61–69. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1749–6632.2011.06258.x>.
  3. Yang CY, Chanalaris A, Troeberg L. ADAMTS and ADAM metalloproteinases in osteoarthritis – looking beyond the usual suspects. Osteoarthritis Cartilage 2017; 25(7): 1000–1009. Dostupné z DOI: <http://dx.doi.org/10.1016/j.joca.2017.02.791>.
  4. Conrozier T, Merle-Vincent F, Mathieu P et al. Epidemiological, biological and radiological differences between arthropic and hypertrophic patterns of hip osteoarthritis in a case, control study. Clin Exp Rheumatol 2004; 22(4): 403–408.
  5. Pelletier JP, Raynauld JP, Beaulieu AD et al. Chondroitin sulfate efficacy versus celecoxib on knee osteoarthritis structural changes using magnetic resonance imaging: a 2-year multicentre exploratory study. Arthritis Res. Ther 2016; 18(1): 256. Dostupné z DOI: <http://dx.doi.org/10.1186/s13075–016–1149–0>,
  6. Huang Z, Ding Ch, Li T et al. Current status and future prospects for disease modification in osteoarthritis. Rheumatology 2018; 57(Suppl 4): iv108-iv123. Dostupné z DOI: <http://dx.doi.org/10.1093/rheumatology/kex496>.
  7. Pelletier JP, Raynauld JP, Beaulieu AD et al. Chondroitin sulfate efficacy versus celecoxib on knee osteoarthritis structural changes using magnetic resonance imaging: a 2-year multicentre exploratory study. Arthritis Res Ther 2016; 18(1): 256. Dostupné z DOI: <http://dx.doi.org/10.1186/s13075–016–1149–0>.
  8. Reginster JY, Badurski J, Bellamy N et al. Extended report: efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis 2013; 72(6): e13. Dostupné z DOI: <http://dx.doi.org/10.1136/annrheumdis-2013–203637>.
  9. Pelletier JP, Roubille C, Raynauld JP et al. Disease-modifying effect of strontium ranelate in a subset of patients from the Phase III knee osteoarthritis study SEKOIA using quantitative MRI: reduction in bone marrow lesions protects against cartilage loss. Ann Rheum Dis 2013; 74: 422–429. Dostupné z DOI: <http://dx.doi.org/10.1136/annrheumdis-2013–203989>.
  10. Permuy M, Guede D, López-Peňa M et al. Effects of glucosamine and risedronate alone or in combination in an experimental rabbit model of osteoarthritis. BMC Vet Res 2014; 10: 97. Dostupné z DOI: <http://dx.doi.org/10.1186/1746–6148–10–97>.
  11. Laslett LL, Doré DA, Quinn SJ et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann Rheum Dis 2012; 71(8): 1322–1328. Dostupné z DOI: <http://dx.doi.org/10.1136/annrheumdis-2011–200970>.
  12. Laslett LL, Kingsbury SR, Hensor EM et al. Effect of bisphosphonate use in patients with symptomatic and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. Ann Rheum Dis 2014; 73(5): 824–830. Dostupné z DOI: <http://dx.doi.org/10.1136/annrheumdis-2012–202989>.
  13. Bingham CO, Buckland-Wright JC, Garnero P et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum 2006; 54(11): 3494–3507. Dostupné z DOI: <http://dx.doi.org/10.1002/art.22160>.
  14. Karsdal MA, Byrjalsen I, Alexandersen P et al. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Osteoarthritis Cartilage 2015; 23(4): 532-543. Dostupné z DOI: <http:doi: 10.1016/j.joca.2014.12.019>.
  15. Baltzer AWA, Moser C, Jansen SA et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cart 2009; 17: (2009), pp. 152–160. Dostupné z DOI: <http://doi:10.1016/j.joca.2008.06.014>.
  16. Yu SP, Hunter DJ. Emerging drugs for the treatment of knee osteoarthritis. Expert Opin Emerg Drugs 2015; 20: 361–378. Dostupné z DOI: <http://doi: 10.1517/14728214.2015.1037275>.
  17. Pers Y-M, Rackwitz L, Ferreira R et al. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Trans Med 2016; 5(7): 847–856. Dostupné z DOI: <http://doi: 10.5966/sctm.2015–0245>.
  18. Lohmander LS, Hellot S, Dreher D et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol 2014; 66(7): 1820–1831. Dostupné z DOI: <http://doi: 10.1002/art.38614>.
  19. Verma P, Dalal K, Chopra M. Pharmacophore development and screening for discovery of potential inhibitors of ADAMTS-4 for osteoarthritis therapy. J Mol Model 2016; 22(8): 178. Dostupné z DOI: <http://doi: 10.1007/s00894–016–3035–8>.
  20. Bruyere O, Richy F Reginster JY. Three year joint space narrowing predicts long term incidence of knee surgery in patients with osteoarthritis: an eight year prospective follow up study. Ann Rheum Dis 2005; 64(12): 1727–1730.
  21. Abadie E, Ethgen D, Avouac B. Recommendations for the use of new methods to assess the efficacy of disease-modifying drugs in the treatment of osteoarthritis. Osteoarthritis Cartilage 2004; 12(4): 263–268.
  22. Reginster et al. Osteoporos Int 2012; 23(Suppl 2): S85–S386: P680.
Labels
Clinical biochemistry Paediatric gynaecology Paediatric radiology Paediatric rheumatology Endocrinology Gynaecology and obstetrics Internal medicine Orthopaedics General practitioner for adults Radiodiagnostics Rehabilitation Rheumatology Traumatology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#