#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vliv digoxinu, valproátu sodného a celekoxibu na mozkovou cyklooxygenázovou dráhu a neuron-specifickou enolázu při pentylenetetrazolem podnícené záchvaty u myší


Autoři: Vadim Tsyvunin;  Sergiy Shtrygol;  Mariia Mishchenko;  Dmytro Lytkin;  Andriy Taran;  Diana Shtrygol;  Tatiana Gorbach
Vyšlo v časopise: Čes. slov. Farm., 2023; 72, 172-183
Kategorie: Původní práce
doi: https://doi.org/10.5817/CSF2023-4-172

Souhrn

Neurozánět hraje důležitou roli v patogenezi epilepsie, a proto je nutné objasnit vliv klasických antiepileptik i adjuvantních látek (např. srdečního glykosidu digoxinu, který již dříve vykazoval jasný antikonvulzivní potenciál) na dráhu cyklooxygenázy a neuron-specifické enolázy v podmínkách chronické epileptogeneze. Cílem článku bylo objasnit vliv digoxinu, natrium-valproátu a celekoxibu samostatně, ale i kombinace digoxinu s natrium-valproátem na obsah cyklooxygenázy 1. a 2. typu, prostaglandinů E2, F2α, I2, tromboxanu B2, 8-isoprostanu a neuron-specifické enolázy v mozku myší na modelu pentylenetetrazolem podnícených záchvatů. Bylo zjištěno, že pouze kombinace natriumvalproátu s digoxinem poskytuje úplný ochranný účinek (absence záchvatů) a vykazuje nejzřetelnější vliv na markery neurozánětu a poškození neuronů ve srovnání s monoterapií každým z těchto léčiv a celekoxibem, který se ukázal jako neúčinné antikonvulzivum. Získané výsledky naznačují, že digoxin je slibným adjuvantním lékem ke klasickým antiepileptikům (především natrium-valproátu) v léčbě epilepsie.

Klíčová slova:

digoxin – neuron-specifická enoláza – cyklooxygenáza – pentylenetetrazolem podnícené záchvaty – natrium-valproát – celekoxib


Zdroje
  1. Thijs R. D., Surges R., O’Brien T. J., Sander J. W. Epilepsy in adults. Lancet 2019; 393(10172), 689–701.
  2. Rosillo-de la Torre A., Luna-Bárcenas G., Orozco-Suárez S., Salgado-Ceballos H., García P., Lazarowski A., Rocha L. Pharmacoresistant epilepsy and nanotechnology. Front. Biosci. (Elite Ed) 2014; 6, 329–340.
  3. Weaver D. F., Pohlmann-Eden B. Pharmacoresistant epilepsy: Unmet needs in solving the puzzle(s). Epilepsia 2013; 54, 80–85.
  4. Tsyvunin V., Shtrygol’ S., Shtrygol’ D. Digoxin enhances the effect of antiepileptic drugs with different mechanism of action in the pentylenetetrazole-induced seizures in mice. Epilepsy Res. 2020; 167, 106465.
  5. Tsyvunin V., Shtrygol’ S., Havrylov I., Shtrygol’ D. Lowdose digoxin enhances the anticonvulsive potential of carbamazepine and lamotrigine in chemo-induced seizures with different neurochemical mechanisms. ScienceRise, Pharm. Sci. 2021; 6(34), 58–65.
  6. Tsyvunin V., Shtrygol’ S., Shtrygol’ D., Mishchenko M., Kapelka I., Taran A. Digoxin potentiates the anticonvulsant effect of carbamazepine and lamotrigine against experimental seizures in mice. Thai. J. Pharm. Sci. 2021; 45(3), 165–171.
  7. Tsyvunin V., Shtrygol’ S., Mishchenko M., Shtrygol’ D. Digoxin at a sub-cardiotonic dose for the modulation of the anticonvulsive potential of valproate, levetiracetam, and topiramate in experimental primary generalized seizures. Ces.Slov. Farm. 2022; 71, 76–86.
  8. Dhir A. An update of cyclooxygenase (COX)-inhibitors in epilepsy disorders. Expert Opin. Investig. Drugs 2019; 28(2), 191–205.
  9. Zidar N., Odar K., Glavac D., Jerse M., Zupanc T., Stajer D. Cyclooxygenase in normal human tissues – is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J. Cell Mol. Med. 2009; 13(9B), 3753–3763.
  10. Hoozemans J. J., Rozemuller A. J., Janssen I., De Groot C. J., Veerhuis R., Eikelenboom P. Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol. 2001; 101(1), 2–8.
  11. Wang H., Ye M., Yu L., Wang J., Guo Y., Lei W., Yang J. Hippocampal neuronal cyclooxygenase-2 downstream signaling imbalance in a rat model of chronic aluminium gluconate administration. Behav. Brain. Funct. 2015; 11, 8.
  12. Bosetti F., Sang-Ho Choi Rethinking the role of cyclooxygenase-1 in neuroinflammation: More than homeostasis. Cell Cycle 2010; 9(15), 2919–2920.
  13. Yermakova A., O’Banion M. K. Cyclooxygenases in the central nervous system: implications for treatment of neurological disorders. Curr. Pharm. Des. 2000; 6(17), 1755–1776.
  14. Bazan N. G. COX-2 as a multifunctional neuronal modulator. Nat Med 2001; 7(4), 414–415.
  15. Seo W., Oh H. Comparisons of acute physiological parameters influencing outcome in patients with traumatic brain injury and hemorrhagic stroke. Worldviews Evid Based Nurs 2009; 6(1), 36–43.
  16. Niizuma K., Endo H., Chan P. H. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J. Neurochem. 2009; 109(1), 133–138.
  17. Wu L., Xiong X., Wu X., Ye Y., Jian Z., Zhi Z., Gu L. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front. Mol. Neurosc. 2020; 13, 28.
  18. Herasymchuk N. M. 8-isoprostane as the main marker of oxidative stress. Zaporož. Med. Ž. 2018; 6(111), 853–859.
  19. Czerska M., Zieliński M., Gromadzińska J. Isoprostanes – A novel major group of oxidative stress markers. Int. J. Occup. Med. Environ. Health. 2016; 29(2), 179–190.
  20. Miller E., Morel A., Saso L., Saluk J. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases. Oxid. Med. Cell Longev. 2014; 2014, 572491.
  21. Patel M., Liang L. P., Roberts L. J. Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures. J. Neurochem. 2001; 79, 1065–1069.
  22. Akcan A., Akyildiz H., Deneme M. A., Akgun H., Aritas Y. Granulomatous lobular mastitis: A complex diagnostic and therapeutic problem. World J. Surg. 2006; 30, 1403– 1409.
  23. Fürst R., Zündorf I., Dingermann T. New Knowledge About Old Drugs: The Anti-Inflammatory Properties of Cardiac Glycosides. Planta Med. 2017; 83(12–13), 977– 984.
  24. Singh T., Mishra A., Goel R. K. PTZ kindling model of epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab. Brain. Dis. 2021; 36(7), 1573–1590.
  25. Hock F. J. Drug Discovery and Evaluation: Pharmacological Assays. Springer International Publishing 2016.
  26. Duveau V., Pouyatos B., Bressand K., Bouyssi’eres C., Chabrol T., Roche Y., Roucard C. Differential effects of antiepileptic drugs on focal seizures in the Intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. CNS Neurosci. Ther. 2016; 22, 497–506.
  27. Oliveira M. S., Furian A. F., Royes L. F., Fighera M. R., Fiorenza N. G., Castelli M., Machado P., Bohrer D., Veiga M., Ferreira J., Cavalheiro E. A., Mello C. F. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 2008; 79(1), 14–21.
  28. Racine R. J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972; 32, 281–294.
  29. Shaker M. E., Hamed M. F., Shaaban A. A. Digoxin mitigates diethylnitrosamine-induced acute liver injury in mice via limiting production of inflammatory mediators. Saudi Pharm. J. 2022; 30(3), 291–299.
  30. Kinoshita P. F., Yshii L. M., Vasconcelos A. R., Orellana A. M., Lima L., Davel A. P., Rossoni L. V., Kawamoto E. M., Scavone C. Signaling function of Na,K-ATPase induced by ouabain against LPS as an inflammation model in hippocampus. J. Neuroinflammation 2014; 11, 218.
  31. Chen J. Y., Chu L. W., Cheng K. I., Hsieh S. L., Juan Y. S., Wu B. N. Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Sci. Rep. 2018; 8(1), 16457.
  32. Itoh K., Taniguchi R., Matsuo T., Oguro A., Vogel C., Yamazaki T., Ishihara Y. Suppressive effects of levetiracetam on neuroinflammation and phagocytic microglia: A comparative study of levetiracetam, valproate and carbamazepine. Neurosci. Lett. 2019; 708, 134363.
  33. Raza M., Dhariwal M. A., Ageel A. M., Qureshi S. Evaluation of the anti-inflammatory activity of sodium valproate in rats and mice. Gen. Pharmacol. 1996; 27(8), 1395–1400.
  34. Vezzani A., Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015; 96, 70–82.
  35. Mishchenko M., Shtrygol’ S., Lozynskyi A., Khomyak S., Novikov V., Karpenko O., Holota S., Lesyk R. Evaluation of anticonvulsant activity of dual COX-2/5-LOX inhibitor darbufelon and its novel analogues. Sci. Pharm. 2021; 89(2), 22.
  36. Dash P. K., Mach S. A., Moore A. N. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J. Neurotrauma 2000; 17(1), 69–81.
  37. Tanaka S., Nakamura T., Sumitani K., Takahashi F., Konishi R., Itano T., Miyamoto O. Stageand region-specific cyclooxygenase expression and effects of a selective COX-1 inhibitor in the mouse amygdala kindling model. Neurosci. Res. 2009; 65(1), 79–87.
  38. Jiang J., Yang M. S., Quan Y., Gueorguieva P., Ganesh T., Dingledine R. Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol Dis 2015; 76, 126–136.
  39. Dey A., Kang X., Qiu J., Du Y., Jiang J. Anti-inflammatory small molecules to treat seizures and epilepsy: From bench to bedside. Trends Pharmacol. Sci. 2016; 37, 463–484.
  40. Yu Y., Nguyen D. T., Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog. Neurobiol. 2019; 183, 101682.
  41. Sang N., Zhang J., Marcheselli V., Bazan N.G., Chen C. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J. Neurosci. 2005; 25, 9858–9870.
  42. Chen C., Bazan N. G. Endogenous PGE2 regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 2005; 93, 929–941.
  43. Bezzi P., Carmignoto G., Pasti L., Vesce S., Rossi D., Rizzini B. L., Pozzan T., Volterra A. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391, 281–285.
  44. Nagib M. M., Yu Y., Jiang J. Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol. Ther. 2020; 209, 107504.
  45. Savonenko A., Muñoz P., Melnikova T., Wang Q., Liang X., Breyer R. M., Andreasson K. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp. Neurol. 2009; 217, 63–73.
  46. Yang H., Zhang J., Breyer R. M., Chen C. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J. Neurochem. 2009; 108, 295– 304.
  47. Baran H., Heldt R., Hertting G. Increased prostaglandin formation in rat brain following systemic application of kainic acid. Brain Res. 1987; 404(1–2), 107–112.
  48. Takei S., Hasegawa-Ishii S., Uekawa A., Chiba Y., Umegaki H., Hosokawa M., Woodward D. F., Watanabe K., Shimada A. Immunohistochemical demonstration of increased prostaglandin F(2)alpha levels in the rat hippocampus following kainic acid-induced seizures. Neuroscience 2012; 218, 295–304.
  49. Steinhauer H. B., Anhut H., Hertting G. The synthesis of prostaglandins and thromboxane in the mouse brain in vivo. Influence of drug induced convulsions, hypoxia and the anticonvulsants trimethadione and diazepam. Naunyn Schmiedeberg’s Arch. Pharmacol. 1979; 310(1), 53–58.
  50. Moghimipour E., Salami A., Monjezi M. Formulation and Evaluation of Liposomes for Transdermal Delivery of Celecoxib. Jundishapur J. Nat. Pharm. Prod. 2015; 10(1), e17653.
  51. Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014; 395(2), 203–230.
  52. Pearson J. N., Rowley S., Liang L. P., White A. M., Day B. J., Patel M. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol. Dis. 2015; 82, 289–297.
  53. Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., Pastore A., Pascente R., Liang L. P., Villa B. R., Balosso S., Abramov A. Y., van Vliet E. A., Del Giudice E., Aronica E., Patel M., Walker M. C., Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2019; 142(7), e39.
  54. Mu R. Z., Liu S., Liang K. G., Jiang D., Huang Y. J. A Meta-Analysis of Neuron-Specific Enolase Levels in Cerebrospinal Fluid and Serum in Children with Epilepsy. Front. Mol. Neurosci. 2020; 13, 24.
  55. Johannessen S. I., Landmark C. J. Antiepileptic drug interactions – principles and clinical implications. Curr. Neuropharmacol. 2010; 8(3), 254–267.
  56. Patsalos P. N., Fröscher W., Pisani F., van Rijn C. M. The importance of drug interactions in epilepsy therapy. Epilepsia 2002; 43(4), 365–385.
  57. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br. J. Clin. Pharmacol. 2006; 61(3), 246–255.
Štítky
Farmacie Farmakologie

Článek vyšel v časopise

Česká a slovenská farmacie

Číslo 4

2023 Číslo 4
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Svět praktické medicíny 1/2024 (znalostní test z časopisu)

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#