#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

New trends in the treatment of immune thrombocytopenia during the COVID-19 pandemic


Authors: K. Žibřidová 1;  E. Konířová 2;  M. Košťál 1
Authors‘ workplace: IV. interní hematologická klinika LF UK a FN Hradec Králové 1;  1. interní klinika – klinika hematologie 1. LF UK a VFN v Praze 2
Published in: Transfuze Hematol. dnes,28, 2022, No. 3, p. 144-149.
Category: Review/Educational Papers
doi: https://doi.org/10.48095/cctahd2022prolekare.cz10

Overview

Treatment of immune thrombocytopenia (ITP) underwent certain changes during the COVID-19 pandemic. In addition to traditional first-line therapy, thrombopoietin receptor agonists therapy and combination of immunosuppressants have achieved a stronger position in recent years. Nevertheless, there are still refractory cases that require a more aggressive approach or the administration of the new targeted drugs outside the approved indications or studies. The COVID-19 pandemic itself and the subsequent boom in vaccination are often the only unequivocal causes of new cases of ITP dia­gnosed in the previous two years. The aim of this article is to summarize the current treatment recommendations and highlight possible new therapeutic options according to our single-centre experience.

Keywords:

COVID-19 – immunosuppressive therapy – immune thrombocytopenia – TPO receptor agonists


Sources

1. Kozák T, Čermák J, Červinek L, et al. Doporučení ČHS pro dia­gnostiku a léčbu imunitní trombocytopenie (ITP). Transfuze Hematol dnes. 2017; 23 (3): 158–169.

2. Neunert C, Terrell DR, Arnold DM, et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Advances. 2019; 3 (23): 3829–3866.

3. Provan D, Arnold DM, Bussel JB, et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Advances. 2019; 3 (22): 3780–3817.

4. Ali I, Graham C, Dempsey-Hibbert NC. Immature platelet fraction as a useful marker in the etiological determination of thrombocytopenia. Exp Hematol. 2019; 78: 56–61.

5. Jeon K, Kim M, Lee J, et al. Immature platelet fraction: A useful marker for identifying the cause of thrombocytopenia and predicting platelet recovery. Medicine. 2020; 99 (7): e19096.

6. Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020; 99 (6): 1205–1208.

7. Yang X, Yang Q, Wang Y, et al. Thrombocytopenia and its association with mortality in patients with COVID‐19. J Thromb Haemost. 2020; 18 (6): 1469–1472.

8. Mahévas M, Moulis G, Andres E, et al. Clinical characteristics, management and outcome of COVID‐19‐associated immune thrombocytopenia: a French multicentre series. Br J Haematol. 2020; 190 (4) e224-e229.

9. Pavord S, Thachil J, Hunt BJ, et al. Practical guidance for the management of adults with immune thrombocytopenia during the COVID‐19 pandemic. Br J Haematol. 2020; 189 (6): 1038–1043.

10. Kant S, Kronbichler A, Salas A, Bruchfeld A, Geetha D. Timing of COVID-19 vaccine in the setting of anti-CD20 therapy: a primer for nephrologists. Kidney Int Rep. 2021; 6 (5): 1197–1199.

11. Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020; 192: 152–160.

12. Swan D, Newland A, Rodeghiero F, Thachil J. Thrombosis in immune thrombocytopenia – cur­rent status and future perspectives. Br J Haematol. 2021; 194 (5): 822–834.

13. Lee EJ, Beltrami Moreira M, Al-Samkari H, et al. SARS-CoV-2 Vaccination and immune thrombocytopenia in de novo and pre-existing ITP patients. Blood. 2022; 139 (10): 1564–1574.

14. Kuter DJ. Exacerbation of immune thrombocytopenia following COVID‐19 vaccination. Br J Haematol. 2021; 195 (3): 365–370.

15. Mithoowani S, Gregory-Miller K, Goy J, et al. High-dose dexamethasone compared with prednisone for previously untreated primary immune thrombocytopenia: a systematic review and meta-analysis. Lancet Haematol. 2016; 3 (10): e489–e496.

16. Cuker A, Liebman HA. Corticosteroid overuse in adults with immune thrombocytopenia: Cause for concern. Res Pract Thromb Haemost. 2021; 5 (6) e12592.

17. Guidry JA, George JN, Vesely SK, Kennison SM, Terrell DR. Corticosteroid side-effects and risk for bleeding in immune thrombocytopenic purpura: patient and hematologist perspectives. Eur J Haematol. 2009; 83 (3): 175–182.

18. Kuter DJ, Bussel JB, Lyons RM, et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet. 2008; 371 (9610): 395–403.

19. Cheng G, Saleh MN, Marcher C, et al. Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomised, phase 3 study. Lancet. 2011; 377 (9763): 393–402.

20. Lozano ML, Mingot-Castellano ME, Perera MM, et al. Deciphering predictive factors for choice of thrombopoietin receptor agonist, treatment free responses, and thrombotic events in immune thrombocytopenia. Sci Rep. 2019; 9 (1): 16680.

21. Arnall JR, DiSogra KY, Downing L, Elmes JB, Tran T, Moore DC. Comparative utilization and efficacy of thrombopoietin receptor agonists in relapsed/refractory immune thrombocytopenia. Am J Ther. 2021; 28 (5): e525–e530.

22. González-López TJ, Fernández-Fuertes F, Hernández-Rivas JA, et al. Efficacy and safety of eltrombopag in persistent and newly dia­g­- nosed ITP in clinical practice. Int J Hematol. 2017; 106 (4): 508–516.

23. Bussel JB, Cheng G, Saleh MN, et al. Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N Engl J Med. 2007; 357 (22): 2237–2247.

24. Skopec B, Sninska Z, Tzvetkov N, et al. Effectiveness and safety of romiplostim among patients with newly dia­gnosed, persistent and chronic ITP in routine clinical practice in central and Eastern Europe: an analysis of the PLATON study. Hematology. 2021; 26 (1): 497–502.

25. Bussel JB, Kuter DJ, Pullarkat V, Lyons RM, Guo M, Nichol JL. Safety and efficacy of long-term treatment with romiplostim in thrombocytopenic patients with chronic ITP. Blood. 2009; 113 (10): 2161–2171.

26. Kuter DJ, Newland A, Chong BH, et al. Romiplostim in adult patients with newly dia­g­nosed or persistent immune thrombocytopenia (ITP) for up to 1 year and in those with chronic ITP for more than 1 year: a subgroup analysis of integrated data from completed romiplostim studies. Br J Haematol. 2019; 185 (3): 503–513.

27. Snell Taylor SJ, Nielson CM, Breskin A, et al. Effectiveness and safety of romiplostim among patients with newly dia­gnosed, persistent and chronic immune thrombocytopenia in European clinical practice. Adv Ther. 2021; 38 (5): 2673–2688.

28. Gómez-Almaguer D, Herrera-Rojas MA, Jaime-Pérez JC, et al. Eltrombopag and high-dose dexamethasone as frontline treatment of newly dia­gnosed immune thrombocytopenia in adults. Blood. 2014; 123 (25): 3906–3908.

29. Zhang L, Zhang M, Du X, Cheng Y, Cheng G. Safety and efficacy of eltrombopag plus pulsed dexamethasone as first‐line therapy for immune thrombocytopenia. Br J Haematol. 2020; 189 (2): 369–378.

30. Mahévas M, Ebbo M, Audia S, Bonnotte B, Schleinitz N, Durand JM, et al. Efficacy and safety of rituximab given at 1,000 mg on days 1 and 15 compared to the standard regimen to treat adult immune thrombocytopenia. Am J Hematol. 2013; 88 (10): 858–861.

31. Červinek L, Černá O, Čaniga M, et al. Efficacy of rituximab in primary immune thrombocytopenia: an analysis of adult pretreated patients from everyday hematological practice. Int J Hematol. 2012; 96 (5): 594–599.

32. Li Z, Mou W, Lu G, et al. Low-dose rituximab combined with short-term glucocorticoids up-regulates Treg cell levels in patients with immune thrombocytopenia. Int J Hematol. 2011; 93 (1): 91–98.

33. Zhou H, Xu M, Qin P, et al. A multicenter randomized open-label study of rituximab plus rhTPO vs rituximab in corticosteroid-resistant or relapsed ITP. Blood. 2015; 125 (10): 1541–1547.

34. Hasan A, Michel M, Patel V, et al. Repeated courses of rituximab in chronic ITP: Three different regimens. Am J Hematol. 2009; 84 (10): 661–665.

35. Arnold DM, Nazi I, Santos A, et al. Combination immunosuppressant therapy for patients with chronic refractory immune thrombocytopenic purpura. Blood. 2010; 115 (1): 29–31.

36. Gudbrandsdottir S, Leven E, Imahiyerobo A, Lee CS, Bussel J. Combination of thrombopoietin receptor agonists, immunosuppressants and intravenous immunoglobulin as treatment of severe refractory immune thrombocytopenia in adults and children. Br J Haematol. 2020; 189 (2): e37–e40.

37. Bradbury CA, Pell J, Hill Q, et al. Mycophenolate mofetil for first-line treatment of immune thrombocytopenia. N Engl J Med. 2021; 385 (10): 885–895.

38. Bussel J, Arnold DM, Grossbard E, et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: Results of two phase 3, randomized, placebo-controlled trials. Am J Hematol. 2018; 93 (7): 921–930.

39. Kuter DJ, Tzvetkov N, Efraim M, et al. Updated phase I/II safety and efficacy results for oral bruton tyrosine kinase inhibitor rilzabrutinib in patients with relapsed/refractory immune thrombocytopenia. Blood. 2021; 138 (Suppl 1): 14.

40. Kuter DJ, Bussel JB, Cooper N, et al. LUNA3 Phase III multicenter, double-blind, randomized, placebo-controlled trial of the oral BTK inhibitor rilzabrutinib in adults and adolescents with persistent or chronic immune thrombocytopenia. Blood. 2021; 138 (Suppl 1): 1010.

41. Robak T, Kaźmierczak M, Jarque I, et al. Phase 2 multiple-dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia. Blood Advances. 2020; 4 (17): 4136–4146.

42. Newland AC, Sánchez‐González B, Rejtő L, et al. Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia. Am J Hematol. 2020; 95 (2): 178–187.

43. Chaturvedi S, Arnold DM, McCrae KR. Splenectomy for immune thrombocytopenia: down but not out. Blood. 2018; 131 (11): 1172–1182.

44. KAZNELSON, Paul. Verschwinden der hamorrhagischen diathese bei einem falle von essentieller thrombopenie (frank) nach milzexstiparation: Splenogene thrombolytische purpura. Wien Klin Wochenschr 1916; 29: 1451.

45. Kosina P, Blechová Z, Koten J, et al. Doporučený postup péče o pacienty s porušenou či zaniklou funkcí sleziny (hyposplenismem/asplenií). Klin Mikrobio­l Inf Lek. 2019; 25 (1): 20–27.

46. Di Sabatino A, Carsetti R, Corazza GR. Post-splenectomy and hyposplenic states. Lancet. 2011; 378 (9785): 86–97.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 3

2022 Issue 3

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#