#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Risk of falling in the elderly from a biomechanical point of view


Authors: Nohelová D. 1,2;  Bizovská L. 1;  Janura M. 1;  Svoboda Z. 1
Authors‘ workplace: Katedra přírodních věd v kinantropologii, Fakulta tělesné kultury, Univerzita Palackého v Olomouci 1;  Université Grenoble Alpes, AGEIS, Grenoble, Francie 2
Published in: Rehabil. fyz. Lék., 29, 2022, No. 3, pp. 136-143.
Category: Review Article
doi: https://doi.org/10.48095/ccrhfl2022136

Overview

The growing incidence of falls is a global problem that not only affects the quality of life of those involved, but also has a far-reaching economic impact, both direct – including health care costs, and indirect – involving the loss of productivity of those affected and their families. It is known that the incidence of falls increases in the elderly, and therefore the question arises as to what changes occur in old age that may affect the risk and incidence of falls. From a biomechanical point of view, there are fundamental changes that affect the building blocks of the system (muscles, bones, joints, ligaments, fascia, and also the senses), but these cannot be separated from neurophysiological changes, i.e. from the functioning of the central nervous system (including receptors). In old age, the postural setting changes, the range of motion in the joints is reduced, the quality of soft tissues and bones (sarcopenia, osteopenia) deteriorates, muscle strength decreases, visual acuity is lost and hearing and the vestibular system function deteriorate. The number of receptors and their sensitivity is decreasing, the conduction of nerve impulses is slowing down, the process of evaluating information, creating responses and finding adequate movement patterns is also slower. Neuromuscular junction is also affected and movement stereotypes change. A change in the construction of one structure will naturally result in a change in the function of the given structure and affects the function and construction of other structures. All the changes that occur gradually during a person’s life are likely to result in a deterioration of the human body’s ability to respond flexibly and effectively to stressful situations and thus prevent a fall.

Keywords:

Falls – aging – balance control systems – risk factors of falls


Sources

1. Hamacher D, Singh NB, Van Dieën JH et al. Kinematic measures for assessing gait stability in elderly individuals: a systematic review. J R Soc Interface 2011; 8(65):1682–1698. doi: 10.1098/rsif.2011.0416.

2. Kang HG, Dingwell JB. Effects of walking speed, strength and range of motion on gait stability in healthy older adults. J Biomech 2008; 41(14): 2899–2905. doi: 10.1016/j.jbiomech.2008.08.002.

3. Lamoth CJ, van Deudekom FJ, van Campen JP et al. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil 2011; 8(2): 1–9. doi: 10.1186/1743-0003-8-2.

4. Blake AJ, Morgan K, Bendall MJ et al. Falls by elderly people at home: prevalence and associated factors. Age Ageing 1988; 17(6): 365–372. doi: 10.1093/ageing/17.6.365.

5. Stalenhoef PA, Diederiks JPM, Knottnerus JA et al. A risk model for the prediction of recurrent falls in community-dwelling elderly: a prospective cohort study. J Clin Epidemiol 2002; 55(11): 1088–1094. doi: 10.1016/s0895-4356(02)00502-4.

6. Stalenhoef PA, Crebolder HFJ, Knottnerus JA et al. Incidence, risk factors and consequences of falls among elderly subjects living in the community. Eur J Public Health 1997; 7(3): 328–334. doi: 10.1093/eurpub/7.3.328.

7. Scott V, Pearce M, Pengelly C. Technical report: hospitalizations due to falls among Canadians age 65 and over. 2005. [online]. Available from: https://www.phac-aspc.gc.ca/seniors-aines/alt-formats/pdf/publications/pro/injury-blessure/seniors_falls/technical-report-hospitalizations_e.pdf.

8. Florence CS, Bergen G, Atherly A et al. Medical costs of fatal and nonfatal falls in older adults. J Am Geriatr Soc 2018; 66(4): 693–698. doi: 10.1111/jgs.15304.

9. Eurostat. Statistics Explained. Population structure and ageing. 2019. [online]. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing#Past_and_future_population_ageing_trends_in_the_EU.

10. Štyglerová T, Němečková M, Šimek M. Stárnutí se nevyhneme. Český statistický úřad. 2014. [online]. Dostupné na: https://www.czso.cz/csu/czso/ea002b5947.

11. World Health Organization. WHO Global report on falls prevention in older age. Geneva: WHO Press 2007.

12. El-Khoury F, Cassou B, Charles MA et al. The effect of fall prevention exercise programmes on fall induced injuries in community dwelling older adults: systematic review and meta-analy­sis of randomised controlled trials. BMJ 2013; 347: f6234. doi: 10.1136/bmj.f6234.

13. Guirguis-Blake JM, Michael YL, Perdue LA et al. Interventions to prevent falls in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA 2018; 319(16): 1705–1716. doi: 10.1001/jama.2017.21962.

14. Hamed A, Bohm S, Mersmann F et al. Fol­low-up efficacy of physical exercise interventions on fall incidence and fall risk in healthy older adults: a systematic review and meta-analy­sis. Sports Med 2018; 4(1): 56. doi: 10.1186/s40798-018-0170-z.

15. Medical Advisory Secretariat. Prevention of falls and fall-related injuries in community-dwel­ling seniors: an evidence-based analysis. Ont Health Technol Assess Ser 2008; 8(2): 1–78.

16. Pfortmueller CA, Kunz M, Lindner G et al. Fall-related emergency department admission: fall environment and settings and related injury patterns in 6 357 patients with special emphasis on the elderly. Sci World J 2014; 256519. doi: 10.1155/2014/256519.

17. Sherrington C, Whitney JC, Lord SR et al. Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc 2008; 56(12): 2234–2243. doi: 10.1111/j.1532-5415.2008.02014.x.

18. Wong R, Chong KC, Law SW et al. The effec­tiveness of exercises on fall and fracture prevention amongst community elderlies: a systematic review and meta-analysis. J Orthop Translat 2020; 24: 58–65. doi: 10.1016/j.jot.2020.05.007.

19. Sleimen-Malkoun R, Temprado JJ, Hong SL. Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels. Front Aging Neurosci 2014; 6(140): 1–17. doi: 10.3389/fnagi.2014.00140.

20. Moraes R, Mauerberg-deCastro E. Complex systems approach to the study of posture and locomotion in older people. In: Barbieri FA, Vitório R (eds). Locomotion and posture in older adults: the role of aging and movement disorders. Springer 2017: 3–20.

21. Leyk D, Rüther T, Wunderlich M et al. Physical performance in middle age and old age: good news for our sedentary and aging society. Dtsch Arztebl Int 2010; 107(46): 809–816. doi: 10.3238/arztebl.2010.0809.

22. Rittweger J, Kwiet A, Felsenberg D. Physical performance in aging elite athlets –challenging the limits of physiology. J Musculoskelet Neuronal Interact 2004; 4(2): 159–160.

23. Lipsitz LA, Goldberger AL. Loss of “complex­ity” and aging. Potential applications of fractals and chaos theory to senescence. JAMA 1992; 267(13): 1806–1809.

24. Manor B, Costa MD, Hu K et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol 2010; 109(6): 1786–1791. doi: 10.1152/japplphysiol.00390.2010.

25. Troen BR. The biology of aging. Mt Sinai J Med 2003; 70(1): 3–22.

26. Hollands M, Hollands K, Rietdyk S. Visual control of adaptive locomotion and changes due to natural ageing. In: Barbieri FA, Vitório R (eds). Locomotion and posture in older adults: the role of aging and movement disorders. Springer 2017: 55–72.

27. Van Dieën JH, Pijnappels M. Balance control in older adults. In: Barbieri F, Vitório R (eds). Locomotion and posture in older adults: the role of aging and movement disorders. Springer 2017: 237–262.

28. Freemont AJ, Hoyland JA. Morphology, mechanisms and pathology of musculoskeletal ageing. J Pathol 2007; 211(2): 252–259. doi: 10.1002/path.2097.

29. Yamada K, Healey R, Amiel D et al. Subchondral bone of the human knee joint in aging and osteoarthritis. Osteoarthritis Cartilage 2002; 10(5): 360–369. doi: 10.1053/joca.2002.0525.

30. Li Y, Wei X, Zhou J et al. The age-related changes in cartilage and osteoarthritis. Biomed Res Int 2013; 916530. doi: 10.1155/2013/916530.

31. Machek SB. Mechanisms of sarcopenia: motor unit remodelling and muscle fibre type shifts with ageing. J Physiol 2018; 596(16): ­3467–3468. doi: 10.1113/JP276586.

32. Lehnert M, Botek M, Sigmund M et al. Kondiční trénink. Olomouc: Univerzita Palackého v Olomouci 2014.

33. Piasecki M, Ireland A, Piasecki J et al. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol 2018; 596(16): 1627–1637. doi: 10.1113/JP275520.

34. Murach KA, Bagley JR, McLeland KA et al. Improving human skeletal muscle myosin heavy chain fiber typing efficiency. J Muscle Res Cell Motil 2016; 37(1–2): 1–5. doi: 10.1007/s10974-016-9441-9.

35. Spendiff S, Vuda M, Gouspillou G et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol 2016; 594(24): 7361–7379. doi: 10.1113/JP272487.

36. Andersen J, Terzis G, Kryger A. Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve 1999; 22(4): 449–540. doi: 10.1002/(sici)1097-4598(199904)22:4<449::aid-mus4>3.0.co;2-2.

37. Grosicki GJ, Standley RA, Murach KA et al. Improved single muscle fiber quality in the oldest-old. J Appl Physiol 2016; 121(4): 878–884. doi: 10.1152/japplphysiol.00479.2016.

38. Doriot N, Wang X. Effects of age and gender on maximum voluntary range of motion of the upper body joints. Ergonomics 2006; 49(3): ­269–281. doi: 10.1080/00140130500489873.

39. Bible JE, Simpson AK, Emerson JW et al. Quantifying the effects of degeneration and other patient factors on lumbar segmental range of motion using multivariate analysis. Spine 2008; 33(16): 1793–1799. doi: 10.1097/BRS.0b013e31817b8f3a.

40. Véle F. Kineziologie: přehled klinické kineziologie a patokineziologie pro diagnostiku a terapii poruch pohybové soustavy. Praha: Triton 2006.

41. Loram ID, Lakie M. Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol 2002; 545(3): 1041–1053. doi: 10.1113/jphysiol.2002.025049.

42. Kolář P. Rehabilitace v klinické praxi. Praha: Galén 2009.

43. Brahem MB, Ayena JC, Otis MJD et al. Risk of falling assessment on different types of ground using the instrumented TUG. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, Hong Kong 2015. IEEE2015: 2372–2377. doi: 10.1109/SMC35812.2015.

44. Silva J, Madureira J, Tonelo C et al. Compar­ing machine learning approaches for fall risk assessment. In: BIOSTEC 2017. 10th International Joint Conference on Biomedical Engineering Systems and Technologies. 2017: 223–230.

45. Polastri P, Godoi D, Gramani-Say K. Falls and postural stability in older individuals: implica­tions for activities of daily living. In: Barbieri FA, Vitório R (eds). Locomotion and posture in older adults: the role of aging and movement disorders. Springer 2017: 263–277.

46. Ganz SB, Peterson MG, Russo PW et al. Functional recovery after hip fracture in the subacute setting. HSS J 2007; 3(1): 50–57. doi: 10.1007/s11420-006-9022-3.

47. World Health Organization. Falls. 2017. [online]. Available from: http://www.who.int/mediacentre/factsheets/fs344/en/.

48. Menant JC, Steele JR, Menz HB et al. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older ­people. Gait Posture 2009; 29(3): 392–397. doi: 10.1016/j.gaitpost.2008.10.057.

49. Menant JC, Perry SD, Steele JR et al. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people. Arch Phys Med Rehabil 2008; 89(10): 1970–1976. doi: 10.1016/j.apmr.2008.02.031.

50. Gardner MM, Robertson MC, Campbell AJ. Exercise in preventing falls and fall related injuries in older people: a review of randomised controlled trials. Br J Sports Med 2000; 34(1): 7–17. doi: 10.1136/bjsm.34.1.7.

51. Day L, Fildes B, Gordon I et al. Randomised factorial trial of falls prevention among older people living in their own homes. BMJ 2002; 325(7356): 128. doi: 10.1136/bmj.325.7356.128.

52. Division of Aging and Seniors. Report on senior’s fall in Canada. Ontario: Public Health Agency of Canada 2005.

53. Mochizuki L, Aliberti S. Gait stability and aging. In: Barbieri FA, Vitório R (eds). Locomotion and posture in older adults: the role of aging and movement disorders. Springer 2017: 45–54.

54. Horak F, MacPherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepherd JT (eds). Handbook of physiology: Section 12 Exercise: Regulation and integration of multiple systems. New York: Oxford University Press 1996: 255–292.

55. MacPherson JM, Horak F. Posture. In: Kandel ER, Schwartz JH, Jessel TM et al (eds). Principles of neural science. New York: McGraw Hill 2013: 935–959.

56. Maurer C, Peterka RJ. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neuro­physiol 2005; 93(1): 189–200. doi: 10.1152/jn.00221.2004.

57. Bizovská L, Janura M, Míková M et al. Rovnováha a možnosti jejího hodnocení. Olomouc: Univerzita Palackého v Olomouci 2017.

58. Sheldon JH. The effect of age on the control of sway. Gerontol Clin (Basel) 1963; 5: 129–138. doi: 10.1159/000244784.

59. van Emmerik RE, van Wegen EE. On the functional aspects of variability in postural control. Exerc Sport Sci Rev 2002; 30(4): 177–183. doi: 10.1097/00003677-200210000-00007.

60. Berg WP, Alessio HM, Mills EM et al. Circum­stances and consequences of falls in independent community-dwelling older adults. Age Ageing 1997; 26(4): 261–268. doi: 10.1093/ageing/26.4.261.

Labels
Physiotherapist, university degree Rehabilitation Sports medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#