#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Wideband tympanometry in clinical practice: a literature review


Authors: Michal Homoláč 1,2;  Maja Stříteská 1,2;  Anna Švejdová 1,2;  Jana Krtičková 1,2;  Lukáš Školoudík 1,2;  Viktor Chrobok 1,2
Authors‘ workplace: Klinika otorinolaryngologie a chirurgie hlavy a krku, Fakultní nemocnice Hradec Králové 1;  Univerzita Karlova, Lékařská fakulta v Hradci Králové 2
Published in: Otorinolaryngol Foniatr, 74, 2025, No. 4, pp. 302-310.
Category: Review Article
doi: https://doi.org/10.48095/ccorl2025302

Overview

This review article outlines the current clinical applications of wideband tympanometry (WBT), a modern and advanced method for assessing the mechanics of the middle ear transmission system. Compared to conventional tympanometry, WBT enables analysis over a broader frequency range. The article places WBT within the historical context of immittance testing development, explains its underlying principles, and highlights its advantages over conventional methods. The main section focuses on clinical applications, primarily in the diagnosis of middle ear diseases such as secretory otitis media, otosclerosis, ossicular chain discontinuity, tympanic membrane perforation, and chronic otitis media. The article further explores the use of WBT in evaluating inner ear pathologies, such as endolymphatic hydrops and third window syndrome, implementation of WBT in newborn hearing screening, and summarizes potential new areas of application, including intracranial pressure monitoring and early postoperative follow-up after middle ear surgery. The discussion also addresses the limitations of the method, the need for standardized interpretation of results, and the potential offered by future integration of artificial intelligence in analyzing complex WBT data.

Keywords:

tympanometry – acoustic impedance tests – middle ear diseases – wideband tympanometry


Sources

1. Čelakovský J, Chrobok V. Příčiny pozitivního tlaku ve středoušní dutině při tympanometrickém vyšetření. Otorinolaryngol Foniatr 1997; 46 (2): 107–110.

2. Shahnaz N, AlMakadma H, Sanford CA. The rise and fall of aural acoustic immittance assessment tools. Semin Hear 2023; 44 (1): 5–16. Doi: 10.1055/s-0043-1764139.

3. Keefe DH, Sanford CA, Ellison JC et al. Wideband aural acoustic absorbance predicts conductive hearing loss in children. Int J Audiol 2012; 51 (12): 880–891. Doi: 10.3109/14992027. 2012.721936.

4. Beers AN, Shahnaz N, Westerberg BD et al. Wideband reflectance in normal Caucasian and Chinese school-aged children and in children with otitis media with effusion. Ear Hear 2010; 31 (2): 221–233. Doi: 10.1097/AUD.0b013e3181c00eae.

5. Taiji H, Kanzaki J. Detection of the presence of middle-ear effusion with wideband absorbance tympanometry. Nihon Jibiinkoka Gakkai Kaiho 2016; 119 (5): 727–733. Doi: 10.3950/jibiinkoka.119.727.

6. Liang J, Xiao Y, Sun H et al. Characteristics of the wideband absorbance of acoustic energy in children (3–7 years old) with otitis media with effusion. Int J Pediatr Otorhinolaryngol 2021; 140 : 110496. Doi: 10.1016/j.ijporl.2020. 110496.

7. Senturk E, Ardic FN, Demirci S et al. Wideband tympanometry and absorbance for diagnosing middle ear fluids in otitis media with effusion. Int Adv Otol 2023; 19 (2): 140–148. Doi: 10.5152/iao.2023.22697.

8. Merchant GR, Al-Salim SC, Tempero RM et al. Improving the differential diagnosis of otitis media with effusion using wideband acoustic immittance. Ear Hear 2021; 42 (5): 1183–1194. Doi: 10.1097/AUD.0000000000001037.

9. Voss SE, Voss GF, Merchant GR et al. Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. Ear Hear 2012; 33 (2): 195–208. Doi: 10.1097/aud.0b013e31823235b5.

10. Karuppannan A, Barman A, Mamatha N. Wideband absorbance pattern and its diagnostic value in adults with middle ear effusions and tympanic membrane perforation. J Int Adv Otol 2024; 20 (2): 158–163. Doi: 10.5152/iao.2024.231048.

11. Callaham ML, Newby A, Saoji A et al. Assessment of pediatric middle ear effusions with wideband tympanometry. Otolaryngol Head Neck Surg 2021; 165 (3): 465–469. Doi: 10.1177/0194599820978262.

12. Shahnaz N, Aithal V, Bargen A. Wideband acoustic immittance in children. Semin Hear 2023; 44 (1): 46–64. Doi: 10.1055/s-0043-17 63294.

13. Şahin B, Özyürek S, Vural M et al. Can wideband tympanometry predict the prognosis of otitis media with effusion? J Audiol Otol 2025; 29 (2): 95–102. Doi: 10.7874/jao.2021.00633.

14. Terzi S, Özgür A, Erdivanli Ö et al. Diagnostic value of the wideband acoustic absorbance test in middle-ear effusion. J Laryngol Otol 2015; 129 (11): 1078–1084. Doi: 10.1017/S0022215115002339.

15. Guan J, Seale P, Gan RZ. Factors affecting sound energy absorbance in acute otitis media model of chinchilla. Hear Res 2017; 350 : 22–31. Doi: 10.1016/j.heares.2017.04.003.

16. Aithal V, Aithal S, Kei J et al. Wideband absorbance in ears with retraction pockets and cholesteatomas: a preliminary study. J Am Acad Audiol 2020; 31 (10): 708–718. Doi: 10.1055/s-0040-1719130.

17. Han Y, Park H, Byun H et al. Machine-learning based analysis of usefulness of wideband tympanometry in various middle ear disorders. Korean J Otorhinolaryngol Head Neck Surg 2023; 66 (7): 447–454. Doi: 10.3342/kjorl-hns.2021.00780.

18. Park SY, Ahn J, Kang S et al. Postoperative change in wideband absorbance after tympanoplasty in chronic suppurative otitis media. Auris Nasus Larynx 2020; 47 (2): 215–219. Doi: 10.1016/j.anl.2019.08.010.

19. Shahnaz N, Polka L. Standard and multifrequency tympanometry in normal and otosclerotic ears. Ear Hear 1997; 18 (4): 326–341. Doi: 10.1097/00003446-199708000-00007.

20. Kan K, Ueda T, Kishimoto Y et al. Availability of audiological evaluation for the differential diagnosis of clinical otosclerosis. Auris Nasus Larynx 2020; 47 (3): 343–347. Doi: 10.1016/j.anl.2020.03.009.

21. Karuppannan A, Barman A. Wideband absorbance tympanometry: a novel method in identifying otosclerosis. Eur Arch Otorhinolaryngol 2021; 278 (11): 4305–4314. Doi: 10.1007/s00405-020-06571-x.

22. Kelava N, Ries M, Valent A et al. The usefulness of wideband absorbance in the diagnosis of otosclerosis. Int J Audiol 2020; 59 (11): 859–865. Doi: 10.1080/14992027.2020.1785644.

23. Durante AS, Nascimento AL, Almeida ER et al. Wideband acoustic absorbance in otosclerosis: does stapedotomy restore normal tympanic cavity function? Int Arch Otorhinolaryngol 2022; 26 (4): e730–e737. Doi: 10.1055/s-0042 -⁠ 1748533.

24. Niemczyk E, Lachowska M, Tataj E et al. Wideband tympanometry and absorbance measurements in otosclerotic ears. Laryngoscope 2019; 129 (10): E365–E376. Doi: 10.1002/lary. 27747.

25. Frade C, Lechuga R, Castro C et al. Análisis de la frecuencia de resonancia del oído medio en la otosclerosis. Acta Otorrinolaringol Esp 2000; 51 (4): 309–313.

26. Shahnaz N, Bork K, Polka L et al. Energy reflectance and tympanometry in normal and otosclerotic ears. Ear Hear 2009; 30 (2): 219–233. Doi: 10.1097/AUD.0b013e3181976a14.

27. Ogut F, Serbetcioglu B, Kirazli T et al. Results of multiple-frequency tympanometry measures in normal and otosclerotic middle ears. Int J Audiol 2008; 47 (10): 615–620. Doi: 10.1080/14992020802178656.

28. Feeney MP, Grant IL, Marryott LP. Wideband energy reflectance measurements in adults with middle-ear disorders. J Speech Lang Hear Res 2003; 46 (4): 901–911. Doi: 10.1044/1092-4388 (2003/070).

29. Karuppannan A, Barman A. Wideband absorbance pattern in adults with otosclerosis and ossicular chain discontinuity. Auris Nasus Larynx 2021; 48 (4): 583–589. Doi: 10.1016/j.anl.2020.10.019.

30. Joint Committee on Infant Hearing. Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 2007; 120 (4): 898–921. Doi: 10.1542/peds.2007-2333.

31. Aithal S, Kei J, Driscoll C et al. Wideband absorbance outcomes in newborns: a comparison with high-frequency tympanometry, automated brainstem response, and transient evoked and distortion product otoacoustic emissions. Ear Hear 2015; 36 (5): e237–e250. Doi: 10.1097/AUD.0000000000000175.

32. Voss SE, Herrmann BS, Horton NJ et al. Reflectance measures from infant ears with normal hearing and transient conductive hearing loss. Ear Hear 2016; 37 (5): 560–571. Doi: 10.1097/AUD.0000000000000293.

33. Kaya S, Çiçek Çınar B, Özbal Batuk M et al. Wideband tympanometry findings in inner ear malformations. Auris Nasus Larynx 2020; 47 (2): 220–226. Doi: 10.1016/j.anl.2019.09.001.

34. Masud SF, Raufer S, Neely ST, Nakajima HH. The effect of middle ear cavity and superior canal dehiscence on wideband acoustic immittance in fresh human cadaveric specimens. AIP Conf Proc 2018; 1965 (1): 050003. Doi: 10.1063/1.5038469.

35. Pieterse E, Biagio-De Jager L, Hofmeyr L et al. Wideband acoustic immittance in superior semicircular canal dehiscence. Auris Nasus Larynx 2022; 49 (6): 921–927. Doi: 10.1016/j.anl.2022.03.008.

36. Nakajima T, Pisano DV, Roosli C et al. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study. Ear Hear 2012; 33 (1): 35–43. Doi: 10.1097/AUD.0b013e31822ccba0.

37. Demir R, Afacan MA, Celiker H et al. Can wideband tympanometry be used as a screening test for superior semicircular canal dehiscence? Clin Exp Otorhinolaryngol 2019; 12 (3): 249–254. Doi: 10.21053/ceo.2018.01137.

38. Sato H, Nakashima T, Lilly DJ et al. Tympanometric findings in patients with enlarged vestibular aqueducts. Laryngoscope 2002; 112 (9): 1642–1646. Doi: 10.1097/00005 537-200209000-00021.

39. Ganaha A, Nojiri T, Nakamura T et al. Diagnosis of enlarged vestibular aqueduct using wideband tympanometry. J Clin Med 2024; 13 (21): 6602. Doi: 10.3390/jcm13216602.

40. Miehe J, Mogensen C, Lyhne NM et al. Wideband tympanometry as a diagnostic tool for Meniere’s disease: a retrospective case-control study. Eur Arch Otorhinolaryngol 2022; 279 (4): 1831–1841. Doi: 10.1007/s00405-021 -⁠ 06882-7.

41. Meng Z, Zhu Y, Yue W et al. The role of wideband tympanometry in the diagnosis of Meniere’s disease. Front Neurol 2022; 13 : 808921. Doi: 10.3389/fneur.2022.808921.

42. Ishizu K, Tamae A, Kubo T et al. Diagnosis and following up of Ménière’s disease using multifrequency tympanometry –⁠ cutoff values and temporal changes in measurements. Auris Nasus Larynx 2018; 45 (1): 81-87. Doi: 10.1016/j.anl.2017.05.008.

43. Tsilivigkos C, Vitkos EN, Ferekidis E et al. Can multifrequency tympanometry be used in the diagnosis of Meniere’s disease? A systematic review and meta-analysis. J Clin Med 2024; 13 (5): 1476. Doi: 10.3390/jcm13051476.

44. Cakir Cetin A, Gurkan E, Kirkim G et al. Wide-band tympanometry results during an acute episode of Ménière’s disease. Audiol Neurotol 2019; 24 (5): 231–236. Doi: 10.1159/0005 02768.

45. Tanno GAY, Santos MAO, Sanches MTD et al. Analysis of wideband tympanometry in Ménière’s disease. Braz J Otorhinolaryngol 2022; 88 (2): 194–203. Doi: 10.1016/j.bjorl.2020. 05.029.

46. Özdemir D, Mehel DM, Çeçen AB et al. Evaluation of age-related changes in middle-ear structures by wideband tympanometry. Acta Otolaryngol 2022; 142 (6): 505–508. Doi: 10.1080/00016489.2022.2087235.

47. Yücel E, Ardıç FN, Tümkaya F et al. Detecting intralabyrinthine pressure increase by postural manipulation with wideband tympanometry and distortion product otoacoustic emissions. Turk Arch Otorhinolaryngol 2020; 58 (4): 203–207. Doi: 10.5152/tao.2020.5530.

48. Torrecilla J, Avan P. Wideband tympanometry patterns in relation to intracranial pressure. Hear Res 2021; 408 : 108312. Doi: 10.1016/ j.heares.2021.108312.

49. Gwer S, Sheward V, Birch A et al. The tympanic membrane displacement analyser for monitoring intracranial pressure in children. Childs Nerv Syst 2013; 29 (6): 927–933. Doi: 10.1007/s00381-013-2036-5.

50. Nerale M, Raghunath R, Karuppannan V et al. Post-surgical changes in wideband absorbance in paediatric cochlear implant users after mastoidectomy and posterior tympanotomy. Acta Otolaryngol 2025; 145 (1): 43–50. Doi: 10.1080/00016489.2024.2437552.

51. Shahnaz N, Feeney MP, Schairer K et al. Wideband acoustic immittance normative data: ethnicity, gender, aging, and instrumentation. Ear Hear 2013; 34 (Suppl 1): 27S–35S. Doi: 10.1097/AUD.0b013e31829d5328.

52. Sundgaard JV, Bray P, Laugesen S et al. A deep learning approach for detecting otitis media from wideband tympanometry measurements. IEEE J Biomed Health Inform 2022; 26 (7): 2974–2982. Doi: 10.1109/JBHI.2022.3159263.

53. Lauxmann M, Viehl F, Priwitzer B et al. Preliminary results of classifying otosclerosis and disarticulation using a convolutional neural network trained with simulated wideband acoustic immittance data. Heliyon 2024; 10 (12): e32733. Doi: 10.1016/j.heliyon.2024. e32733.

Prohlášení o střetu zájmu

Autor práce prohlašuje, že v souvislosti s tématem, vznikem a publikací tohoto článku není ve střetu zájmu a vznik ani publikace článku nebyly podpořeny žádnou farmaceutickou firmou. Toto prohlášení se týká i všech spoluautorů.

Grantová podpora

Tento výstup vznikl v rámci programu Cooperatio, vědní oblasti SURG.

ORCID autorů

M. Homoláč 0000-0002-5750-6278,

M. Stříteská 0000-0002-8738-5809,

A. Švejdová 0000-0002-9052-0549,

J. Krtičková 0000-0001-6884-8882,

L. Školoudík 0000-0003-4054-8719,

V. Chrobok 0000-0001-7537-139X.

Přijato k recenzi: 28. 5. 2025

Přijato k tisku: 4. 7. 2025

MUDr. Michal Homoláč

Klinika otorinolaryngologie a chirurgie hlavy a krku

LF UK a FN Hradec Králové

Sokolská 581

500 05 Hradec Králové

michal.homolac@fnhk.cz

Labels
Audiology Paediatric ENT ENT (Otorhinolaryngology)
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#