Otitis media with effusion – a microbiome-driven disease
Authors:
T. Valenta 1-3; Lenka Ryšková 4,5; K. Néma 1,6,7; R. Bolehovská 4,5; R. Kukla 4,5; F. Vrbacký 8; K. Štefková 9; Lukáš Školoudík 1,6; M. Veselý 2,3; M. Palenik 2,3; B. Gál 2,3; Viktor Chrobok 1,6
Authors‘ workplace:
Klinika otorinolaryngologie a chirurgie hlavy a krku, Univerzita Karlova, Lékařská fakulta v Hradci Králové
1; Klinika otorinolaryngologie a chirurgie hlavy a krku, Fakultní nemocnice u sv. Anny v Brně
2; Klinika otorinolaryngologie a chirurgie hlavy a krku, Masarykova univerzita, Lékařská fakulta, Brno
3; Ústav klinické mikrobiologie, Univerzita Karlova, Lékařská fakulta v Hradci Králové
4; Ústav klinické mikrobiologie, Fakultní nemocnice Hradec Králové
5; Klinika otorinolaryngologie a chirurgie hlavy a krku, Fakultní nemocnice Hradec Králové
6; Katedra vojenského vnitřního lékařství a vojenské hygieny, Univerzita obrany, Vojenská lékařská fakulta, Hradec Králové
7; IV. Interní hematologická klinika, Fakultní nemocnice Hradec Králové
8; Ústav anatomie, Univerzita Karlova, Lékařská fakulta v Hradci Králové
9
Published in:
Otorinolaryngol Foniatr, 74, 2025, No. 4, pp. 311-315.
Category:
Review Article
doi:
https://doi.org/10.48095/ccorl2025311
Overview
Objectives: To provide a state-of-the-art review on studies on the microbial basis of otitis media with effusion (OME). Sources: PubMed database, published textbooks. Methods: Review of the literature using the following search words: “otitis media with effusion,” “middle ear,” “bacterial pathogens,” and “microbiome”. Results: The beginning of the 21st century brought methods of massive parallel sequencing into practice. Following this, a multitude of studies dealing with the microbial nature of OME have been published. These studies suggest that “adenoid reservoir“ theory may not explain complete pathogenesis of OME. Other chronic respiratory diseases also have their influence, as well as the influence of the host response to pathogens. The production of mucins, especially MUC5AC and MUC5B, probably plays a significant role. Some studies also indicated a possible protective effect of certain bacterial genera. Conclusion: The availability of new microbiological methods has allowed better understanding of the pathophysiology of OME. New pathogens have been identified, and knowledge about the possible protective effects of some bacterial species has been gained. However, further research is needed on both middle ear and respiratory tract dysbiosis and the host response to microorganisms. The potential protective effects of some bacterial genera may lead to the development of probiotics as a novel treatment modality for OME.
Keywords:
Bacteria – Microbiome – otitis media with effusion – adenoid reservoir – adenoids
Sources
1. Školoudík L, Kalfeřt D, Valenta T et al. Relation between adenoid size and otitis media with effusion. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135 (6): 399–402. Doi: 10.1016/j.anorl.2017.11.011.
2. Školoudík L, Formánek M, Chrobok V. Sluchová trubice. Havlíčkův Brod: Tobiáš 2019 : 108–112.
3. Casselbrant ML, Mandel EM. Epidemiology. In: Rosenfeld RM, Bluestone CD (eds). Evidence-based otitis media. 2nd ed. Hamilton: Ontario: BC Decker 2003 : 147–162.
4. Nogues JC, Perez-Losada M, Preciado D. Review of otitis media microbiome studies: What do they tell us? Laryngoscope Investig Otolaryngol 2020; 5 (5): 936–940. Doi: 10.1002/lio2.460.
5. Fekete S, Juhasz J, Makra N et al. Characterization of middle ear microbiome in otitis media with effusion in Hungarian children: Alloiococcus otitidis may potentially hamper the microbial diversity. Heliyon 2024; 10 (21): e39380. Doi: 10.1016/j.heliyon.2024.e39380.
6. Černý V, Hrdý J, Beneš J et al. Slovo o mikrobiomu: úvaha nad historií, současným stavem a pojmoslovím vzkvétajícího oboru. Epidemiol Mikrobiol Imunol 2023; 72 (2): 112–118.
7. Berg G, Rybakova D, Fischer D et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020; 8 (1): 103. Doi: 10.1186/s40168-020-00875-0.
8. Manos J. The human microbiome in disease and pathology. APMIS 2022; 130 (12): 690–705. Doi: 10.1111/apm.13225.
9. Ogunrinola GA, Oyewale JO, Oshamika OO et al. The Human Microbiome and Its Impacts on Health. Int J Microbiol 2020; 2020 : 8045646. Doi: 10.1155/2020/8045646.
10. Abdolghanizadeh S, Salmeh E, Mirzakhani F et al. Microbiota insights into pet ownership and human health. Res Vet Sci 2024; 171 : 105220. Doi: 10.1016/j.rvsc.2024.105220.
11. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016; 14 (8): e1002533. Doi: 10.1371/journal.pbio.1002533.
12. Lacy BE, Spiegel B. Introduction to the Gut Microbiome Special Issue. Am J Gastroenterol 2019; 114 (7): 1013. Doi: 10.14309/ajg.0000000000000303.
13. Mishra A, Lai GC, Yao LJ, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021; 184 (13): 3394.e20–3409.e20. Doi: 10.1016/j.cell.2021.04.039.
14. Stinson LF, Boyce MC, Payne MS et al. The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Front Microbiol 2019; 10 : 1124. Doi: 10.3389/fmicb.2019.01124.
15. Yao Y, Cai X, Ye Y et al. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol 2021; 12 : 708472. Doi: 10.3389/fimmu.2021.708472.
16. Mamiňák K, Funda D, Zavázalová Š et al. Mikrobiom a chronická rinosinusitida. Otorinolaryngol Foniatr 2024; 73 (3): 182–190. Doi: 10.48095/ccorl12024182.
17. Hong P, Liu CM, Nordstrom L et al. The role of the human microbiome in otolaryngology: head and neck surgery: a contemporary review. Laryngoscope 2014; 124 (6): 1352–1357. Doi: 10.1002/lary.24490.
18. Samarrai R, Frank S, Lum A et al. Defining the microbiome of the head and neck: A contemporary review. Am J Otolaryngol 2022; 43 (1): 103224. Doi: 10.1016/j.amjoto.2021.103224.
19. Johnston J, Hoggard M, Biswas K et al. Pathogen reservoir hypothesis investigated by analyses of the adenotonsillar and middle ear microbiota. Int J Pediatr Otorhinolaryngol 2019; 118 : 103–109. Doi: 10.1016/j.ijporl.2018.12.030.
20. Xu J, Dai W, Liang Q et al. The microbiomes of adenoid and middle ear in children with otitis media with effusion and hypertrophy from a tertiary hospital in China. Int J Pediatr Otorhinolaryngol 2020; 134 : 110058. Doi: 10.1016/j.ijporl.2020.110058.
21. Liu CM, Cosetti MK, Aziz M et al. The otologic microbiome: a study of the bacterial microbiota in a pediatric patient with chronic serous otitis media using 16SrRNA gene-based pyrosequencing. Arch Otolaryngol Head Neck Surg 2011; 137 (7): 664–668. Doi: 10.1001/archoto.2011.116.
22. Chan CL, Wabnitz D, Bardy JJ et al. The microbiome of otitis media with effusion. Laryngoscope 2016; 126 (12): 2844–2851. Doi: 10.1002/lary.26128.
23. Jorissen J, van den Broek MFL, De Boeck I et al. Case-Control Microbiome Study of Chronic Otitis Media with Effusion in Children Points at Streptococcus salivarius as a Pathobiont - -Inhibiting Species. mSystems 2021; 6 (2). Doi: 10.1128/mSystems.00056-21.
24. Jančatová D, Formánek M, Školoudík L et al. Poznámky k problematice chronické dysfunkce Eustachovy tuby. Otorinolaryngol Foniatr 2018; 67 (4): 107–112.
25. Elzayat S, Nosair N, Ghazy AA et al. Otitis media with effusion is not a sterile inflammatory process: scanning electron microscope evidence. Eur Arch Otorhinolaryngol 2021; 278 (8): 2713–2721. Doi: 10.1007/s00405-020-06338-4.
26. Hall-Stoodley L, Hu FZ, Gieseke A et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006; 296 (2): 202–211. Doi: 10.1001/jama.296.2.202.
27. Barron CL, Kamel-Abusalha LB, Sethia R et al. Identification of essential biofilm proteins in middle ear fluids of otitis media with effusion patients. Laryngoscope 2020; 130 (3): 806–811. Doi: 10.1002/lary.28011.
28. Niedzielski A, Chmielik LP, Stankiewicz T. The Formation of Biofilm and Bacteriology in Otitis Media with Effusion in Children: A Prospective Cross-Sectional Study. Int J Environ Res Public Health 2021; 18 (7). Doi: 10.3390/ijerph18073555.
29. Buzatto GP, Tamashiro E, Proenca-Modena JL et al. The pathogens profile in children with otitis media with effusion and adenoid hypertrophy. PLoS One 2017; 12 (2): e0171049. Doi: 10.1371/journal.pone.0171049.
30. Chen W, Yin G, Chen Y et al. Analysis of factors that influence the occurrence of otitis media with effusion in pediatric patients with adenoid hypertrophy. Front Pediatr 2023; 11 : 1098067. Doi: 10.3389/fped.2023.1098067.
31. Sokolovs-Karijs O, Briviba M, Saksis R et al. Comparing the Microbiome of the Adenoids in Children with Secretory Otitis Media and Children without Middle Ear Effusion. Microorganisms 2024; 12 (8). Doi: 10.3390/microorganisms12081523
32. Andrade MA, Hoberman A, Glustein J et al. Acute otitis media in children with bronchiolitis. Pediatrics 1998; 101 (4 Pt 1): 617–619. Doi: 10.1542/peds.101.4.617.
33. Alles R, Parikh A, Hawk L et al. The prevalence of atopic disorders in children with chronic otitis media with effusion. Pediatr Allergy Immunol 2001; 12 (2): 102–106. Doi: 10.1046/j.0905-6157.2000.00008.x.
34. Kolbe AR, Castro-Nallar E, Preciado D et al. Altered middle ear microbiome in children with chronic otitis media with effusion and respiratory illnesses. Front Cell Infect Microbiol 2019; 9 : 339. Doi: 10.3389/fcimb.2019.00339.
35. MacIntyre EA, Chen CM, Herbarth O et al. Early-life otitis media and incident atopic disease at school age in a birth cohort. Pediatr Infect Dis J 2010; 29 (12): e96–e99. Doi: 10.1097/inf.0b013e3181fcd9e8.
36. Konečná E, Vídeňská P, Urík M. Biologický význam a vývoj mikrobiomu horních cest dýchacích. Otorinolaryngol Foniatr 2020; 69 (3): 135–138.
37. Daniel M, Kamani T, El-Shunnar S et al. National Institute for Clinical Excellence guidelines on the surgical management of otitis media with effusion: are they being followed and have they changed practice? Int J Pediatr Otorhinolaryngol 2013; 77 (1): 54–58.
38. Rosenfeld RM, Shin JJ, Schwartz SR et al. Clinical Practice Guideline: Otitis Media with Effusion Executive Summary (Update). Otolaryngol Head Neck Surg 2016; 154 (2): 201–214.
39. Val S. Basic science concepts in otitis media pathophysiology and immunity: role of mucins and inflammation. In: Otitis media: state of the art concepts and treatment. Springer International Switzerland AG, Gewerbestrasse; 2015 : 53–79.
40. Preciado D, Goyal S, Rahimi M et al. MUC5B is the predominant mucin glycoprotein in chronic otitis media fluid. Pediatr Res 2010; 68 (3): 231–236.
41. Dodson KM, Cohen RS, Rubin BK. Middle ear fluid characteristics in pediatric otitis media with effusion. Int J Pediatr Otorhinolaryngol 2012; 76 (12): 1806–1809.
42. Krueger A, Val S, Pérez-Losada M et al. Relationship of the middle ear effusion microbiome to secretory mucin production in pediatric patients with chronic otitis media. Pediatr Infect Dis J 2017; 36 (7): 635–640.
43. Roy MG, Livraghi-Butrico A, Fletcher AA et al. Muc5b is required for airway defence. Nature 2014; 505 (7483): 412–416.
Prohlášení o střetu zájmů
Autor práce prohlašuje, že v souvislosti s tématem, vznikem a publikací tohoto článku není ve střetu zájmů a vznik ani publikace článku nebyly podpořeny žádnou farmaceutickou firmou. Toto prohlášení se týká i všech spoluautorů.
Grantová podpora
Tento výstup vznikl v rámci programu Cooperatio, vědní oblasti SURG.
Přijato k recenzi: 5. 5. 2025
Přijato k tisku: 7. 10. 2025
MUDr. Tomáš Valenta
Klinika otorinolaryngologie a chirurgie hlavy a krku
Univerzita Karlova
Lékařská fakulta v Hradci Králové
Šimkova 870
500 03 Hradec Králové
valentat@lfhk.cuni.cz
Labels
Audiology Paediatric ENT ENT (Otorhinolaryngology)Article was published in
Otorhinolaryngology and Phoniatrics
2025 Issue 4
Most read in this issue
- Acute zygomatitis – a rare otogenic inflammatory complication
- Evaluation of voice disorders in clinical practice
- Newborn hearing screening in the Czech Republic – changes in monitoring and control
- Editorial