#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evaluation of accuracy of body mass index in diagnosing of obesity in relation to body fat percentage in female aged 55–84 years


Authors: Aleš Gába 1;  Miroslava Přidalová 1;  Izabela Zając-Gawlak 2
Authors‘ workplace: Katedra přírodních věd v kinantropologii, Fakulta tělesné kultury, Univerzita Palackého v Olomouci 1;  Katedra teorii i metodyki wychowania fizycznego, Akademia wychowania fizycznego, Katowice, Polská republika 2
Published in: Čas. Lék. čes. 2014; 153: 22-27
Category: Original Article

Overview

Background.
Currently, body mass index (BMI) is frequently used for evaluation of obesity prevalence. This weight to height index does not reflect variability and changes in body composition components, and therefore, the BMI prevalence data may significantly differ from those based on the body fat percentage (%BFM). For the above reason, the primary aim of the study was to determine the prevalence of overweight and obesity according to %BFM and relate these data to BMI categories in women aged 55–84 years.

Methods and results.
446 females with an average age of 65.8 ± 6.4 years participated in this study. Body composition was measured using InBody 720. Our results have shown high prevalence of overweight and obesity in the study sample. Number of obese subjects increased with increasing age. We found the highest prevalence of obesity in females over 80 years. Evaluation of obesity according to BMI seems to be accurate in women with BMI > 30 kg/m2. We found only 1% of nonobese subjects (evaluated according to %BFM) in this BMI category. In contrast, there was found a large number of subjects with obesity (evaluated according to %BFM) among women in 18.5 to 24.9 kg/m2 and 25.0 to 29.9 kg/m2 BMI categories.

Conclusions.
The results have shown that obesity may be diagnosed in women with lower BMI (i.e., < 30 kg/m2). For this reason we recommend to evaluate the prevalence of obesity primarily from BFM% in this age group.

Keywords:
body composition – body fat mass – InBody 720


Sources

1. Hlúbik P. Obezita – nemoc, rizikový faktor. Interní medicína pro praxi 2002; 8: 396–398.

2. Lukaski HC. Evaluation of body composition: why and how? Mediterr J Nutr Metab 2009; 2: 1–10.

3. Thibault R, Genton L, Pichard C. Body composition: Why, when and for who? Clin Nutr 2012; 31: 435–447.

4. Heymsfield S, Lohman T, Wang Z, Going S. Human body composition. Champaign, IL: Human Kinetics 2005.

5. Spirduso W, Francis K, MacRae P. Physical dimensions of aging. Champaign, IL: Human Kinetics 2005.

6. Kyle UG, Morabia A, Schutz Y, Pichard C. Sedentarism affects body fat mass index and fat-free mass index in adults aged 18 to 98 years. Nutrition 2004; 20: 255–260.

7. Schutz Y, Kyle UG, Pichard C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18-98 y. Int J Obes Relat Metab Disord 2002; 26: 953–960.

8. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes 2008; 32: 959–966.

9. Pelclová J, Gába A, Tlučáková L, Pośpiech D. Association between physical activity (PA) guidelines and body composition variables in middle-aged and older women. Arch Gerontol Geriatr 2012; 55: e14–e20.

10. Connor Gorber S, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes Rev 2007; 8: 307–326.

11. Ling CHY, de Craen AJM, Slagboom PE, Gunn DA, Stokkel MPM, Westendorp RGJ, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr 2011; 30: 610–615.

12. Volgyi E, Tylavsky FA, Lyytikainen A, Suominen H, Alen M, Cheng S. Assessing body composition with DXA and bioimpedance: effects of obesity, physical activity, and age. Obesity 2008; 16: 700–705.

13. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. Geneva: World Health Organization 1998.

14. WHO Expert Committee on Physical Status. Physical status: the use and interpretation of anthropometry : report of a WHO Expert Committee. Geneva: World Health Organization 1995.

15. World Health Organization (Ed.) Obesity and overweight, Fact sheet no. 311 (March). Geneva: World Health Organisation, 2013.

16. Sturm R. Increases in morbid obesity in the USA: 2000-2005. Public Health 2007; 121: 492–496.

17. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 2011; 378: 804–814.

18. Pashankar D, Loening-Baucke V. Increased prevalence of obesity in children with functional constipation evaluated in an academic medical center. Pediatrics 2005; 116: 377–380.

19. Zamboni M, Mazzali G, Zoico E, Harris TB, Meigs JB, Di Francesco V, et al. Health consequences of obesity in the elderly: a review of four unresolved questions. Int J Obes 2005; 29: 1011–1029.

20. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and Trends in Obesity Among US Adults, 1999–2008. JAMA 2010; 303: 235–241.

21. Seidell JC. Prevalence and time trends of obesity in Europe.J Endocrinol Invest 2002; 25: 816–822.

22. Berghöfer A, Pischon T, Reinhold T, Apovian C, Sharma A,Willich S. Obesity prevalence from a European perspective: a systematic review. BMC Public Health 2008; 8: 200–210.

23. Evans EM, Rowe DA, Racette SB, Ross KM, McAuley E. Is the current BMI obesity classification appropriate for black and white postmenopausal women? Int J Obes 2006; 30: 837–843.

24. Kyle UG, Zhang FF, Morabia A, Pichard C. Longitudinal study of body composition changes associated with weight change and physical activity. Nutrition 2006; 22: 1103–1111.

25. Forbes G. Longitudinal changes in adult fat-free mass: influence of body weight. Am J Clin Nutr 1999; 70: 1025.

26. Gába A, Přidalová M. Age-related changes in body composition in a sample of Czech women aged 18 to 89 years: a cross-sectional study. Eur J Nutr 2014; doi: 10.1007/s00394-013-0514-x.

27. Kyle UG, Melzer K, Kayser B, Picard-Kossovsky M, Gremion G, Pichard C. Eight-year longitudinal changes in body composition in healthy Swiss adults. J Am Coll Nutr 2006; 25: 493–501.

28. Dey DK, Bosaeus I, Lissner L, Steen B. Changes in body composition and its relation to muscle strength in 75-year-old men and women: A 5-year prospective follow-up study of the NORA cohort in Göteborg, Sweden. Nutrition 2009; 25: 613–619.

29. Toth MJ, Tchernof A, Sites CK, Poehlman ET. Effect of menopausal status on body composition and abdominal fat distribution. Int J Obes 2000; 24: 226–231.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#