#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Endocannabinoid system I – the role in regulation of physiology functions


Authors: Martykánová L.
Authors‘ workplace: Ústav preventivního lékařství LF MU, Brno
Published in: Čas. Lék. čes. 2010; 149: 363-367
Category: Review Article

Endokanabinoidní systém má širokou škálu účinků v CNS i v periferních tkáních. Systém tvoří kanabinoidní receptory CB1 a CB2, endokanabinoidy a jejich biosyntetické a degradační enzymy. CB1 receptory se ve velké hustotě nacházejí na presynaptických zakončeních neuronů v mozku, kde ovlivňují přenos nervového vzruchu. Mají vliv na vnímání bolesti, tlumení stresové reakce, řízení motorických funkcí, kognici, emocionální reakce, regulaci příjmu potravy, psychickou homeostázu a motivaci. CB1 receptory jsou dále přítomny v buňkách zažívacího traktu, jaterních buňkách, buňkách bílé a hnědé tukové tkáně, buňkách Langerhansových ostrůvků slinivky břišní. V těchto periferních tkáních je jejich úkolem zachování energetické rovnováhy.

Overview

Endocannabinoid system has a wide scale of actions on CNS and on peripheral tissues. The system consists of cannabinoid receptors CB1 and CB2, endocannabinoids and their biosynthetic and degrading enzymes. CB1 receptors in high density occur on presynaptic neuronal terminals in brain influencing neurotransmission thereby number of functions – pain perception, inhibition of stress reaction, regulation of motor functions, cognition, emotional reactions, regulation of food intake, psychical homeostasis and motivation. CB1 receptors are present in GIT cells, hepatocytes, adipocytes, pancreatic isles cells. Energy homeostasis is the main function in peripheral issues. CB2 receptors are present mainly in cells of immune system, in the cilliary body of eye, in testes, vasal cells, and intestinal smooth muscle cells.

Key words:
endocannabinoids, endocannabinoid system, regulation of food intake, immunity, metabolic syndrome.


Sources

1. Di Marzo, et al. Levels metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. Journal of Biochemistry 2000; 75(6): 2434–2444.

2. Kingsley PJ, Marnett LJ. Analysis of endocannabinoids, their congeners and COX-2 metabolites. Journal of Chromatography B 2009; 877: 2746–2754.

3. Hanuš LO, Šulcová A, Miovský M. Editorial. Adiktologie 2004; 4: 457–461.

4. Hardie RC, Muallem S. Lipids in Ca2 signalling – an introduction. Cell Calcium 2009; 45: 517–520.

5. Matias I, Di Marzo V. Endocannabinoids and the control of energy balance. Trends in Endocrinology and Metabolism 2006; 18(1): 27–37.

6. Kreitzer AC, Regehr WG. Retrograde signaling by endocannabinoids. Current Opinion in Neurobiology 2002, 12: 324–330.

7. Piazza PV, Lafontan M, Girard J. Integrated physiology and pathophysiology of CB1-mediated effects of the endocannabinoid systém. Diabetes & Metabolism 2007; 33: 97–107.

8. Wang J, Ueda N. Biology of endocannabinoid synthesis system. Prostaglandins and Other Lipid Mediators 2009; 89: 112–119.

9. Fride E. Endocannabinoids in the central nervous system – an overview. Prostaglandines, Leukotrienes and Essential Fatty Acids 2002; 66(2–3): 231–233.

10. Engeli S, Jordan J. The endocannabinoid System: Body Weight and Metabolic Regulation. Clinical Cornestone 2006; 8(Suppl 4): 24–35.

11. Berry EM, Mechoulam R. Tetrahydrocannabinol and endocannabinoids in Feeding and appetite. Pharmacology & Therapeutics 2002; 95: 185–190.

12. Sanchis-Segura C, et al. Reduced sensitivity to reward in CB1 knockout mice. Psychopharmacology 2004; 176: 223–232.

13. Abel EL. Effects of marijuana on the solution of anagrams, memory and appetite. Nature 1971; 231: 260–261.

14. StŅving RK, et al. Leptin, ghrelin, and endocannabinoids: Potential therapeutic targets in anorexia nervosa. Journal of Psychiatric Research 2009; 43: 671–679.

15. Fride E, et al. Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. European Journal of Pharmacology 2001; 419(2–3): 207–214.

16. Fride E, et al. Endocannabinoids and food intake: newborn suckling and appetite regulatiom in adulthood. Experimental Biology and Medicine 2005, 230: 225–234.

17. Beinfeld MC, Connolly K. Activation of CB1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids. Neuroscience Letters 2001; 301: 69–71.

18. Smid SD, et al. The endocannabinoids anandamide and 2‑arachidonoylglycerol inhibit cholinergic contractility in the human colon. European Journal of Pharmacology 2007; 575: 168–176.

19. Vettor R, Pagano C. The role of the endocannabi noid systemin lipogenesis and fatty acid metabolism. Best Practice & Research Clinical Endocrinology & Metabolism 2009; 23: 51–63.

20. Matias I, et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and ß-pancreatic cells and in obesity and hyperglycemia. Journal of Clinical Endocrinology and Metabolism 2006; 91: 3171–3180.

21. Monteleone P, et al. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge.eating disorder, but not in bulimia nervosa. Neuropsychopharmacology 2005; 30: 1216–1221.

22. Cota D, et al. The endogenous cannabinoid systém affects energy balance via central orexigenic drive and peripheral lipogenesis. Journal of Clinical Investigation 2003; 112: 423–431.

23. Ravinet Trillou C, et al. CB1 cannabinoid receptor knockout in mice leads to leanness, resistence to diet-induced obesity and enhanced leptin sensitivity. International Journal of Obesity 2004; 28: 640–648.

24. Monteleone P, Castaldo E, Maj M. Neuroendocrine dysregulation of food intake in eating disorders. Regulatory Peptides 2008; 149: 39–50.

25. Berger A, et al. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proceedings of the National Academy of Sciences of the USA 2001; 98(11): 6402–6406.

26. Watanabe S, et al. n-3 polyunsaturated fatty acid deficiency elevates and n-3 PUFA enrichment reduces brain 2‑arachidonoylglycerol level in mice. Prostaglandines, Leukotrienes and Essential Fatty Acids, 2002; 69: 51–59.

27. Pandey R, et al. Endocannabinoids and immune regulation. Pharmacological Research 2009; 60: 85–92.

28. Pope C, Mechoulam R, Parson L. Endocannabinoid signaling in neurotoxicity and neuroprotection. NeuroToxicology 2009; doi:10.1016/j.neuro.2009.12.002.

29. Tanasescu R, Constantinescu CS. Cannabinoids and the immune system: An overview. Immunobiology 2010; doi:10.1016/j.imbio.2009.12.05

30. Klein TW. Cannabinoid-based drugs as anti-inflammatory thrapeutics. Nature Reviews Immunology 2005; 5: 400–411.

31. Sugamura K, et al. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 2009; 119(1): 28–36.

32. Pulvinerti N, Nasca MR, Micali G. Topical adelmidrol 2 % emulsion, a novel aliamide, in the treatment of mild atopic dermatitis in pediatric subjects: a pilot study. Acta Dermatovenerologica Croatica 2007; 15: 80–83.

33. Nogueiras R, et al. The endocannabinoid system: Role in glucose and energy metabolism. Pharmacological Research 2009; 60: 93–98.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Neurology General practitioner for adults Rheumatology Pain management
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#