#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

On the Concept of the Metabolic Syndrome


Authors: A. Žák;  A. Slabý
Authors‘ workplace: Univerzita Karlova v Praze, 1. lékařská fakulta, IV. interní klinika VFN
Published in: Čas. Lék. čes. 2009; 148: 536-543
Category: Review Article

Overview

During the last twenty years, a cluster of risk factors called metabolic syndrome (MetS) attracts interest in preventive medicine. According to the prevailing notion, which evolved from clinical observations, the core of the MetS consists of visceral obesity, impaired metabolism of glucose, atherogenic dyslipidemia, and arterial hypertension. These risk factors tend to cluster and are believed to be causally associated with insulin resistance. Components of the MetS are to a various degree involved in chronic inflammation, prothrombotic state, endothelial dysfunction, and oxidative stress. Supporters of the concept of MetS as a physiological and clinical entity believe that systems approach can help in understanding pathogenesis, improve prediction of cardiovascular risk, and increase motivation for prevention and treatment. On the other hand, serious criticisms emerged, which concern insufficient experimental evidence, imprecise diagnostic criteria, and questionable justification in general practice. To clarify unresolved problems which evolved in the ongoing debate, further research is needed.

Key words:
(cardio)metabolic syndrome, risk factors, pathophysiological mechanisms, diagnostic criteria, predictive power.


Sources

1. Haffner SM., Gonzales C., Valdez RA., et al. Is microalbuminuria part of the prediabetic state? The Mexico City Diabetes Study. Diabetologia 1993; 1002–1006.

2. Lee J, Sparrow D, Vokonas PS, et al. Uric acid and coronary heart disease risk: evidence for a role of uric acid in the obesity-insulin resistence syndrome. The Normative Aging Study. Am J Epidemiol 1995; 288–294.

3. Song Y, Liu S, Manson J-AE. High-sensitive C-reactive protein and the metabolic syndrome. In: Hansen BC, Bray GA. (ed.), Contemporary Endocrinology: The metabolic syndrome: Epidemiology, Clinical Treatment, and underlying mechanisms. New Persey: Human Press Totowa 2008; 167–188.

4. Godsland IF, Crook D, Proudler AJ, et al. Hemostatic risk factors and insulin sensitivity, regional body fat distribution, and the metabolic syndrome. J Clin Endocrinol Metab 2005; 90: 190–197.

5. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114: 1752–1761.

6. Grundy SM. Metabolic syndrome: A multiplex cardiovascular risk factor. J Clin Endocrinol Metab 2007; 92: 399–404.

7. Kahn R, Buse J, Ferrannini E, et al. The metabolic syndrome: Time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005; 28: 2289–2304.

8. Reaven GM. Metabolic syndrome. To be or not to be? In: Hansen BC, Bray GA. (ed.), Contemporary Endocrinology: The metabolic syndrome: Epidemiology, Clinical Treatment, and undrelying mechanisms. New Persey: Humnan Press Totowa 2008; 11–36.

9. Brietzke SA. Controverzy in diagnosis and management of the metabolic syndrome Med Clin N Am 2007; 91: 1041–1061.

10. Kylin E. Studien über das Hypertonie-Hyperglykämie-Hyperurikämiesyndrom. Zentbl Inn Med 1923; 44: 105–112.

11. Vague J. The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 1956; 4: 20–34.

12. Albrink M J, Meigs MW. Interrelationship between skinfold thickness, serum lipids, and blood sugar in normal men. Am J Clin Nutr 1964; 15: 255–261.

13. Avogaro P, Crepaldi G, Enzi G, et al. Associazione di iperlipidemia, diabete mellito e obesita di medio grado. Acto Diabetol Lat 1967; 4: 36–41.

14. Haller H. Epidemiology and associated risk factors of hyperlipoproteinemia. Zschr Ges Inn Med 1977; 32: 124–128.

15. Modan M, Halkin H, Almog S, et al. Hyperinsulinemia: A link between hypertension, obesity, and glucose intolerance. J Clin Invest 1985; 75: 809–817.

16. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1607.

17. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006; 17: 4–12.

18. Lann D, Le Roith D. Insulin resistance as underlying cause for the metabolic. Med Clin N Am 2007; 91: 1063–1077.

19. Žák A, Slabý A. Aterogenní dyslipidémie a metabolický syndrom: Patofyziologické mechanismy. Čas Lék čes 2008; 147: 459–470.

20. Miranda PJ, DeFronzo RA, Califf RM, et al. Metabolic syndrome: Definition, pathophysiology, and mechanisms. Am Heart J 2005; 149: 33–45.

21. Goralski KB, Sinal CJ. Type 2 diabetes and cardiovascular disease: getting to the fat of the matter. Can J Physiol Pharmacol 2007; 85: 113–132.

22. Sharma AM. The obese patient with diabetes mellitus: From research targets to treatment options. Am J Med 2006; 119(Suppl. 5A): 17S–23S.

23. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39–48.

24. Rosmond R, Bjorntorp P. Occupational status, cortisol secretory pattern, and visceral obesity in middle-aged men. Obes Res 2000; 8: 445–450.

25. Bray GA. Treatment of the metabolic syndrome with weight loss, exercise, hormones and surgery. In: Hansen BC, Bray GA. (ed.), Contemporary Endocrinology: The metabolic syndrome: Epidemiology, Clinical Treatment, and undrelying mechanisms. New Persey: Humnan Press Totowa 2008; 57–73.

26. Edwards KL, Newman B, Mayer E, et al. Heritability of factors of the insulin resistance syndrome in women twins. Genet Epidemiol 1997; 14: 241–253.

27. Poulsen P, Vaag A, Kyvik K, et al. Genetic versus environmental aetiology of the metabolic syndrome among male and female twins. Diabetologia 2001; 44: 537–543.

28. Pladevall M, Singal B, Williams LK, et al. A single factor underlies the metabolic syndrome: A confirmatory factor analysis. Diabetes Care 2006; 29: 113–122.

29. Hanley AJ, Karter AJ, Festa A, et al. Factor analysis of metabolic syndrome using directly measured insulin sensitivity: The Insulin Resistance Atherosclerosis Study. Diabetes 2002; 51: 2642–2647.

30. Ford ES. Factor analysis and defining the metabolic syndrome. Ethn Dis 2003; 13: 429–437.

31. Zanolin ME, Tosi F, Zoppini G, et al. Clustering of cardiovascular risk factors associated with the insulin resistance syndrome: Assessment by principal component analysis in young hyperandrogenic women. Diabetes Care 2006; 29: 372–378.

32. Retnakaran R, Zinman B, Connelly PW, et al. Nontraditional cardiovascular risk factors in pediatric metabolic syndrome. J Pediatr 2006; 148: 176–182.

33. Yeni-Komshian H, Carantoni M, Abbasi F, et al. Relationship between several surrogate estimates of insulin resistance and quantification of insulin-mediated glucose disposal in 490 healthy nondiabetic volunteers. Diabetes Care 2000; 23: 171–175.

34. Ferrannini E, Natali A, Bell P, et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance. J Clin Invest 1997; 100: 1166–1173.

35. Stern SE, Williams K, Ferrannini E, et al. Identification of individuals with insulin resistance using routine clinical measurements. Diabetes 2005; 34: 333–339.

36. Rathmann W, Haastert B, Giani G, et al. Critical evaluation of models to identify individuals with insulin resistance (Letter). Diabetes Care 2005; 28: 1833.

37. Howard G, Bergman R, Wagenknecht LE, et al. Ability of alternative indices of insulin sensitivity to predict cardiovascular risk: comparison with the “minimalmodel“. Insulin Resistence Atherosclerosis Study (IRAS) Investigators. Ann Epidemiol 1998; 8: 358–369.

38. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Part 1. Diagnosis and Classification of Diabetes Mellitus. Geneva: World Health Organization 1999.

39. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–2497.

40. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006; 23: 469–480.

41. Ferrannini E, Balkau B. Insulin: In search of a syndrome. Diabet Med 2002; 19: 724–729.

42. Tuan C-Y, Abbasi F, Lamendola C, et al. Usefulness of plasma glucose and insulin concentrations in identifying patients with insulin resistance. Am J Cardiol 2003; 92: 606–610.

43. McNeill AM, Rosamond WD, Girman CJ, et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the Atherosclerosis Risk in Communities study. Diabetes Care 2005; 28: 385–390.

44. Lakka H-M, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle–aged men. JAMA 2002; 288: 2709–2716.

45. Ford ES, Giles WH. A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care 2003; 26: 575–581.

46. Meigs JB, Wilson PW, Nathan DM, et al. Prevalence and characteristics of the metabolic syndrome in the San Antonio Heart and Framingham Offspring Studies. Diabetes 2003; 52: 2160–2167.

47. Khoo CM, Liew CF, Chew SK, et al. The impact of central obesity as a prerequisite for the diagnosis of metabolic syndrome. Obesity 2007; 15: 262–269.

48. Fruchart JC, Sacks F, Hermans MP, et al. The Residual Risk Reduction Initiative: A call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol 2008; 102 (Suppl 10): 1K–34K.

49. Alexander CM, Landsman PB, Teutsch SM, et al. NCEP--defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 2003; 52: 1210–1214.

50. Golden SH, Folsom AR, Coresh J, et al. Risk factor groupings related to insulin resistance and their synergistic effect on subclinical atherosclerosis. The Atherosclerosis Risk in Communities Study. Diabetes 2002; 51: 3069–3076.

51. Stern MP, Williams K, Gonzales-Villalpando C, et al. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 2004; 27: 2676–2681.

52. Girman CJ, Rhodes T, Mercuri M, et al. The metabolic syndrome and risk of major coronary events in the Scandidavian Simvastatin Survival Study (4S) and the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/ TexCAPS). Am J Cardiol 2004; 93: 136–141.

53. Gale EAM. Should we dump the metabolic syndrome? Yes Brit Med J 2008; 336: 640.

54. Alberti KGM, Zimmet PZ. Should we dump the metabolic syndrome? No. Brit Med J 2008; 336: 641.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#