#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Nitric oxide in patients with obesity and metabolic syndrome


Authors: J. Hodis;  N. Gaier;  H. Farghali
Authors‘ workplace: Univerzita Karlova v Praze, 1. lékařská fakulta, Farmakologický ústav
Published in: Čas. Lék. čes. 2009; 148: 34-38
Category: Review Article

Overview

Nitric oxide in its pleiotropic role interacts with many diverse systems and beside others acts in pathophysiology of obesity and metabolic syndrome. Our review tends to summarize available basic publications aimed at the impact of NO on mitochondrial respiration, insulin resistance mainly in hepatocyte and the impact of NO on other factors of glucose metabolism. In this review, the authors try to shed light to pathophysiology of impaired NO bioavailability during diabetes and obesity too.

Key words:
nitric oxide, mitochondrial respiration, insulin resistance.


Sources

1. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298: 249–258.

2. Alderton WK, Cooper CC, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357: 593–615.

3. Ribiere C, Jaubert AM, Gaudiot N, et al. White Adipose Tissue Nitric Oxide Synthase: A Potential Source for NO Production. Biochemical and Biophysical Research Communications 1996; 222: 706–712.

4. Farghali HA, Kameníková L. Oxid dusnatý-NO. In Lincová D, Farghali H, et al. Základní a aplikovaná farmakologie. Praha: Galen et Karolinum 2005; 301–307.

5. Hunsaker DM, Hunsaker JC. Obesity Epidemic in the United States (A Cause of Morbidity and Premature Death); in Forensic Pathology Reviews, Vol. 2. Humana Press Inc., DOI10. 1385/1592598722 ISBN 978-1-59259-872-4 (Online) 2007.

6. Hainer V. Základy klinické obezitologie. Praha: Grada Publishing a.s. 2004; 36.

7. Morley JE, Flood JF. Effect of competitive antagonism of NO synthetase on weight and food intake in obese and diabetic mice. Am J Physiol 1994; 266 (1Pt2): R164–R168.

8. Tsuchiya K, Sakai H, Suzuki N, et al. Chronic blockade of nitric oxide synthesis reduces adiposity and improves insulin resistance in high-fat-induced obese mice. Endocrinology 2007; 21: doi:10.1210/en.2006-1371.

9. Giulivi C, Kato K, Cooper CE. Nitric oxide regulation for oxygen consumption I: cellular physiology. Review. Am J Physiol Cell Physiol 2006; 291(6): C1225-31. Epub 2006 Aug 2.

10. Cleeter MW, Cooper JM, Darley-Usmar VM, et al. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994; 345: 50–54.

11. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Letters 1994; 356: 295–298.

12. Torres J, Cooper CE, Sharpe M, Wilson MT. Reactivity of Nitric Oxide with Cytochrome c Oxidase:Interactions with the Binuclear Centre and Mechanism of Inhibition. Journal of Bioenergetics and Biomembranes 1998; 30.

13. Davies N, Trikkas C, Cooper CE. Does carbon monoxide inhibit cytochrome oxidase in vivo? Biochem SocTrans 1997; 25: 406S.

14. Schweizer M, Richter C. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen pension. Biochemical and Biophysical research Communications 1994; 204(1): 169–175.

15. Clerc P, Rigoulet M, Leverve X, Fontaine E. Nitric oxide increases oxidative phosphorylation efficiency. J Bioenerg Biomembr 2007; 39: 158–166 DOI 10.1007/s10863-007-9074-1.

16. Nisoli E, Clementi E, Carruba MO, Moncada, S. Defective Mitochondrial Biogenesis: A Hallmark of the High Cardiovascular Risk in the Metabolic Syndrome? Circ Res 2007; 100: 795–806.

17. Bossy-Wetzel E, Lipton SA. Nitric oxide signaling regulates mitochondrial number and function. Cell Death and Differentiation 2003; 10: 757–760. doi:10.1038/sj.cdd.4401244.

18. Nedergaard J, Ricquier D, Kozak LP. Uncoupling proteins: current status and therapeutic prospects – Meeting on Uncoupling Proteins. EMBO reports 2005; 6: No 10.

19. Mantena SK, King AL, Andringa KK, et al. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol – and obesity-induced fatty liver diseases. Free Radic Res 2008; doi:10.1016/j.freeradbiomed.2007.12.029.

20. Banks WA. The blood-brain barrier as a cause of obesity.Review. Curr Pharm Des 2008; 14: 1606–1614.

21. ESC guidelines on Diabetes, Pre-diabetes and Cardiovascular Diseases. European Heart Journal 2007; 9(Suppl C): 1–74.

22. Leclercq IA, Morais ADS, Schroyen B, et al. Insulin resistance in hepatocytes and sinusoidal liver cells: Mechanisms and consequences – Review. Journal of Hepatology 2007; 47: 142–156.

23. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Letters 2008; 582: 97–105.

24. Martyn JAJ, Kaneki M, Yasuhara S. Obesity-induced Insulin Resistance and Hyperglycemia – Etiologic Factors and Molecular Mechanisms. Anesthesiology 2008; 109: 37–48.

25. Hodis J, Kutinová-Canová N, Potmesil P, et al. The role of adrenergic agonists on glycogenolysis in rat hepatocyte cultures and possible involvement of NO. Physiol Res 2007; 56: 419–425. Epub 2006 Aug 22.

26. Albuszies G, Vogt J, Wachter U, Thiemermann C, et al. The effect of iNOS deletion on hepatic gluconeogenesis in hyperdynamic murine septic shock. Intensive Care Med 2007; 33: 1094–1101. DOI 10.1007/s00134-007-0638-7.

27. Guarino MP, Afonso RA, Raimundo N, et al. Hepatic glutathione and nitric oxide are critical for hepatic insulin-sensitizing substance action Am J Physiol Gastrointest Liver Physiol 2003; 284: G588–G594. First published December 2002; 4: 10.1152/ajpgi.00423.2002.

28. Moore MC, DiCostanzo CA, Smith MS, et al. Hepatic portal venous delivery of a nitric oxide synthase inhibitor enhances net hepatic glucose uptake Am J Physiol Endocrinol Metab 2008; 294: E768–E777. First published January 2008; 22: doi:10.1152/ajpendo.00184.2007.

29. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000; 106: 473–481.

30. Thomas MS, Zhang WR, Jordan PM, et al. Signaling pathways mediating a selective induction of nitric oxide synthase II by tumor necrosis factor alpha in nerve growth factor-responsive cells. Journal of Neuroinflammation 2005; 19: doi:10.1186/1742-2094-2-19.

31. Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-infl ammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86: 3815–3819.

32. Chen H, Montagnani M, Funahashi T, et al. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003; 278: 45021–45026.

33. Vos TA, Van Goor H, Tuyt L, et al. Expression of Inducible Nitric Oxide Synthase in Endotoxemic Rat Hepatocytes Is Dependent on the Cellular Glutathione Status. Hepatology 1999; 29: 421–426.

34. Nishimura M, Izumiya Y, Higuchi A, et al. Adiponectin Prevents Cerebral Ischemic Injury Through Endothelial Nitric Oxide Synthase–Dependent Mechanisms. Circulation 2008; 117: 216–223.

35. Ellger B, Langouche L, Richir M, et al. Modulation of regional nitric oxide metabolism: Blood glucose control or insulin?Intensive Care Med 2008; 34: 1525–1533 DOI 10.1007/s00134-008-1118-4.

36. Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and Vascular Disease: Pathophysiology, Clinical Consequences, and Medical Therapy: Part I. Circulation 2003; 108: 1527-1532 DOI: 10.1161/01.CIR.0000091257.27563.32.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#