#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Serum butyrylcholinesterase/HDL-cholesterol ratio and atherogenic index of plasma in patients with fatty liver disease


Authors: Ladislav Turecký 1;  Viera Kupčová 2;  Monika Urfinová 1;  Marcel Repiský 1;  Eva Uhlíková 1
Authors‘ workplace: Ústav lekárskej chémie, biochémie a klinickej biochémie Lekárskej fakulty Univerzity Komenského a 1;  III. interná klinika Lekárskej fakulty Univerzity Komenského v Bratislave 2
Published in: Vnitř Lék 2021; 67(E-2): 4-8
Category: Original Contributions

Overview

Cardiovascular diseases on an atherosclerotic basis are a serious health problem. Atherosclerosis is a multifactorial pathological process with complex pathogenesis. Its origin and development is conditioned by a set of several risk factors. Changes in the spectrum of lipoproteins are one of the well-known, serious risk factors for cardiovascular disease. The results of several authors showed, that the examination of the ratio of some lipoproteins can provide more accurate information about the cardiovascular risk in a given individual than the individual lipid parameters alone. Non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic hepatopathy.

The aim of our study was to examine lipoprotein ratios – atherogenic index of plasma (AIP) and butyrylcholinesterase/ HDL-cholesterol ratio – in patients with NAFLD and to evaluate their changes in relation to the severity of hepatic steatosis. The study group consisted of 64 patients with hepatic steatosis, 32 men and 32 women. Patients were examined for fatty liver index (FLI), with FLI values above 60.0 signaling the presence of steatosis. From the biochemical parameters, we examined the serum concentrations of total cholesterol, HDL- and LDL-cholesterol, triacylglycerols and butyrylcholinesterase activity in patients with fatty liver disease.

As the results of our study showed, both basic lipid parameters – total cholesterol and triacylglycerols – were increased in patients with hepatic steatosis compared to the values in the control group (Chol: 3,59 ± 0,16 vs. 5,14 ± 0,14 mmol/l; TAG: 0,85 ± 0,06 vs. 1,86 ± 0,14 mmol/l). Both investigated lipoprotein ratios – AIP and the BChE / HDL-cholesterol ratio were also significantly increased in patients with liver steatosis (AIP: -0,191 ± 0,04 vs. 0,157 ± 0,04; BChE/HDL-C: 3171 ± 123 vs. 4602 ± 291). The value of the BChE/HDL-cholesterol ratio correlated well with the total cholesterol/HDL cholesterol ratio (correl.coeff. 0,802) as well as with the atherogenic index of plasma (correl.coeff. 0,702). The findings of elevated AIP and BChE/HDL-C ratios confirmed the hypothesis of an increased risk of cardiovascular disease in patients with fatty liver disease. The finding of a significant positive correlation between AIP and BChE/HDL-C on the one hand and fatty liver index (FLI) on the other hand suggests that cardiovascular risk increases with the severity of steatotic liver injury.

Keywords:

Fatty liver – cardiovascular risk – butyrylcholinesterase – atherogenic index of plasma – ratio BChE/HDL-cholesterol – ratio total cholesterol/HDL-cholesterol.


Sources

1. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111–188.

2. Žák A. Poruchy metabolismu lipidu a lipoproteinu. In: Zima T (ed): Laboratorní diagnostika.

3. vydanie. Galén: Praha 2013: 169–207. ISBN 978-80-7492-062-2. 3. Millán J, Pintó X, Muňoz A, et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vascular Health and Risk Management 2009; 5: 757–765.

4. Dobiášová M, Frohlich J. Nový aterogenní index plazmy (AIP) odpovídá poměru triglyceridů a HDL-cholesterolu, velikosti částic lipoproteinů a esterifikační rychlosti cholesterolu: změny po léčbě lipanorem. Vnitř Lék 2000; 46(3): 152–156.

5. Dobiášová M. AIP – Aterogenní index plazmy jako významný prediktor kardiovaskulárního rizika: od výskumu do praxe. Vnitř lék 2006; 52(1): 64–71.

6. Kutty KM, Jain R, Huang S, et al. Serum pseudocholinesterase: high density lipoprotein cholesterol ratio as an index of risk for cardiovascular disease. Clin Chim Acta 1981; 115(1): 55–61.

7. Wierzbicki AS, Oben J. Nonalcoholic fatty liver and lipids. Curr Opinion Lipidol 2012; 23(4): 345–352.

8. Maratos-Flier E. Fatty liver and FGF21 physiology. Experimental Cell Res 2017; 360(1): 2–5.

9. Chitturi S, Farrell GC, Hashimoto E, et al. Non-alcoholic fatty liver disease in the Asia- -Pacific region: definitions and overview of proposal guidelines. J Gastroenterol Hepatol 2007; 22(6): 778–787.

10. Fan JG, Farrell GC. Epidemiology of non-alcoholic fatty liver disease in China. J Hepatol 2009; 50(1): 204–210.

11. Söderberg C, Stal P, Askling J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 2010; 51(2): 595–602.

12. Brea A, Pintó X, Ascaso JF, et al. Nonalcoholic fatty liver disease, association with cardiovascular disease and treatment. (I) Nonalcoholic fatty liver disease and its association with cardiovascular disease. Clin Investig Arterioscler 2017; 29(3): 141–148.

13. Bedogni G, Gastaldelli A, Foschi FG. Fatty liver, cardiometabolic disease and mortality. Curr Opinion Lipidol 2020; 31(1): 27–31.

14. Bedogni G, Bellentani S, Miglioli L, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 2014; 6: doi: 10.1186/1471-230X-6-33.

15. Fedchuk L, Nascimbeni F, Pais R, et al. Performance and limitations of steatosis biomarkers in patients with nonalcokolic fatty liver disease. Aliment Pharmacol Therap 2014; 40(10): 1209–1222.

16. Motamed N, Sohrabi M, Ajdarkosh M, et al. Fatty liver index vs waist circumference for predicting non-alcoholic fatty liver disease. World J Gastroenterol 2016; 22(10): 3023–3030.

17. Havránek T. Statistika pro biologické a lékařské vědy. Academia Praha 1993, 478 s. ISBN 80-200-0080-1

18. von Eckardstein A, Thomas L. Lipoprotein-stoffwechsel. In: L.Thomas (ed): Labor und Diagnose, Vol.1, TH-Books Verlagsgesellschaft mbH Frankfurt/Main 2012; 8: 254–281. ISBN 978-3-9805215-8-1

19. Dobiášová M. Atherogenic index of plasma [log(triglycerides/HDL-cholesterol)]: theoretical and practical implications. Clin Chem 2004; 50(7): 1113–1115.

20. Pohanka M. Diagnoses of pathological states based on acetylcholinesterase and butyrylcholinesterase. Curr Med Chem 2020; 27(18): 2994–3011.

21. Rustemeijer C, Schouten JA, Voerman HJ, et al. Is pseudocholinesterase activity related to markers of triacylglycerol synthesis in type II diabetes mellitus? Clin Sci (Lond) 2001; 101(1): 29–35.

22. Iwasaki T, Yoneda M, Nakajima A, et al. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Internal Med 2007; 46(19): 1633–1639.

23. Oda E. Associations between serum cholinesterase and incident hyper-LDL cholesterolemia, hypertriglyceridemia and hypo-HDL cholesterolemia as well as changes in lipid levels in a health screening population. Atherosclerosis 2015; 241(1): 1–5.

24. Mathews SE, Kumar RB, Shukla AP. Nonalcoholic steatohepatitis, obesity and cardiac dysfunction. Curr Opinion Endocrinol Diabetes Obesity 2018; 25(5): 315–320.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#