#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Examination of function and structure of respiratory cilia of adult patients suffering from chronic obstructive pulmonary disease (COPD) –  comparison of nasal and bronchial mucosa (pilot of CILIARY STUDY)


Authors: V. Koblížek 1;  T. Dobešová 1;  F. Salajka 1;  E. Čermáková 2;  M. Tomšová 3;  D. Pohnětalová 3;  P. Papoušek 4;  V. Bartoš 1;  Z. Paráková 1;  J. Ruta 1;  V. Sedlák 1
Authors‘ workplace: Plicní klinika Lékařské fakulty UK a FN, přednosta doc. MU Dr. František Salajka, CSc. 1;  Ústav lékařské bio­fyziky Lékařské fakulty UK Hradec Králové, přednosta doc. Ing. Josef Hanuš, CSc. 2;  Fingerlandův ústav patologie Lékařské fakulty UK a FN Hradec Králové, přednosta prof. MU Dr. Aleš Ryška, Ph. D. 3;  Ústav patologické fyziologie Lékařské fakulty UK Hradec Králové, přednosta prof. MU Dr. Miroslav Kuba, CSc. 4
Published in: Vnitř Lék 2009; 55(11): 1035-1042
Category: Original Contributions

Overview

Introduction:
Borderline between upper and lower respiratory tract pathology is probably artificial (bronchial asthma). Also inflammation of bronchial mucosa during chronic obstructive pulmonary disease (COPD) is likely combined with inflammatory involvement of nasal mucosa. Ciliary edge of respiratory epithelium is very important part of mucosa layer. Aim: To investigate and compare nasal and bronchial ciliary beat frequency (CBF), degree of nasal and bronchial ciliary dyskinesia, presence of ciliary akinesia and incidence of spino­cellular metaplasia in the both mucosa localities among of stable COPD patients (pts). Method: Nasal and bronchial mucosa were obtained in the course of bronchoscopy examination of COPD pts in general intravenous anesthesia. Native samples of mucosa tissue were assessed by digital high‑speed video microscopy (1,000× magnification). Paired t‑test was used to evaluate differences in average frequencies. Significance level was α = 0.05. Mode was used to describe „index of dyskinesia“, as a measure of association was used κ coefficient. Material: Seventeen COPD pts (6 weeks free of exacerbation) at the age 47– 80 (average 64.2 years ± 9,7) were examined (13 male), ave­rage FEV1 61% predic. value (21– 81, ± 15). All patients were active smokers (average 42 pack years ± 22.8) and all suffered from bronchitic (daily sputum production) phenotype of COPD. Results: We did not find any difference in average ciliary beat frequencies between nose (6,0 Hz ± 1.3) and bronchus (5.9 ± 1.3) locality (p = 0.427). We find weak association between nose and bronchus in „ciliary akinesia“ (κ = 0.282) but medium association in „metaplasia“ (κ = 0.485), in index of dyskinesia (κ = 0.733). Conclusion: We did not find in our data any difference in nasal and bronchial ciliary beat frequencies and we found medium association between nasal and bronchial spinocellular metaplasia and index of ciliary dyskinesia. Possible generalization of these results would require further investigation and analysis.

Key words:
nasal mucosa –  bronchial mucosa –  chronic obstructive pulmonary disease –  ciliary study –  ciliary beat frequency –  ciliary akinesia –  spinocellular metaplasia


Sources

1. Agius A, Wake M, Pahor A et al. Smoking and middle ear ciliary beat frequency in otitis media with effusion. Acta Otolaryngol 1995; 115: 44– 49.

2. Agius A, Smallman L, Pahor A. Age, smoking and ciliary beat frequency. Clin Otolaryngol Allied Sci 1998; 23: 227– 230.

3. Agnew J, Little F, Pavia D et al. Mucus clearance from the airways in chronic bronchitis –  smokers and ex- smokers. Bull Eur Physiopathol Respir 1982; 18: 473– 484.

4. Atef A, Zeid I, Qotb M et al. Effect of passive smoking on ciliary regeneration of nasal mucosa after functional endoscopic sinus surgery in children. J Laryngol Otol 2009; 123: 75– 79.

5. Barnes PJ, Shapiro SD, Pauwels RA. New treatments for chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003; 22: 672– 688.

6. Barnes PJ. Mechanisms in chronic obstructive pulmonary disease: comparisons with asthma. PG 17 An expert view of the differences between astma and COPD. ERS Berlin 2008 Congress –  Course Educational Material 5– 19.

7. Braiman A, Priel Z. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir Physiol Neurobio­l 2008; 163: 202– 207.

8. Celli B. Update on the Management of COPD. Chest 2008; 133: 1451– 1462.

9. Corren J, Adinoff A, Buchmeier A et al. Nasal beclomethasone prevents the seasonal increase in bronchial responsiveness in patients with allergic rhinitis and asthma. J Allergy Clin Immunol 1992; 90: 250– 256.

10. Corren J. Allergic rhinitis and asthma: How important is the link? J Allergy Clin Immunol 1997; 99: S781– S786.

11. Devalia J, Sapsford R, Wells C et al. Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir Med 1990; 84: 303– 312.

12. Devalia J, Davies R. Human nasal and bronchial epithelial cells in culture: an overview of their characteristics and function. Allergy Proc 1991; 12: 71– 79.

13. Doran S, Koss R, Tran C et al. Effect of serotonin on ciliary beating and intracellular calcium concentration in identified population of embryonic ciliary cells. J Exp Biol 2004; 207: 1415– 1429.

14. Fliegauf M, Olbrich H, Horvath J et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary celiary dyskinesia. Am J Respir Crit Care Med 2005; 171: 1343– 1349.

15. Fontanari P, Burnet H, Zattara‑Hartmann MC et al. Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals. J Appl Physiol 1996; 81: 1739– 1743.

16. Gaga M, Lambrou P, Papageorgiou N et al. Eosinophils are a feature of upper and lower airway pathology in non‑atopic asthma, irrespective of the presence of rhinitis. Clin Exp Allergy 2000; 30: 663– 669.

17. Goodman R, Yergin B, Landa J et al. Relationship of smoking history and pulmonary function tests to tracheal mucous velocity in nonsmokers, young smokers, ex‑ smokers and patients with chronic bronchitis. Am Rev Respir Dis 1978; 117: 205– 214.

18. Gross RD, Atwood CW jr, Ross SB et al. The coordination of breathing and swallowing in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009; 176: 559– 565.

19. Hens G, Hellings P. The nose: gatekeeper and trigger of bronchial disease. Rhinology 2006; 44: 179– 187.

20. Hurst JR, Kuchai R, Michael P et al. Nasal symptoms, airway obstruction and disease severity in chronic obstructive pulmonary disease. Clin Physion Funct Imaging 2006; 26: 251– 256.

21. Hurst JR, Perera WR, Wilkinson TM et al. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit 2006; 173: 71– 78.

22. Chilvers MA, O’Callaghan C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax 2000; 55: 314– 317.

23. Chilvers M, McKean M, Rutman A et al. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur Respir J 2001; 18: 965– 970.

24. Chilvers M, Rutman A, O’Callaghan CO. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax 2003; 58: 333– 338.

25. Chlumský J, Štěrbová L, Smolíková L et al. Vztah ventilačních plicních parametrů, tolerance fyzické zátěže a kvality života u pacientů s chronickou obstrukční plicní nemocí. Vnitř Lék 2002; 48: 320– 324.

26. Ishijima S. High‑speed video microscopy of flagella and cilia. Methods Cell Biol 1995; 47: 239– 243.

27. Kašák V. Exacerbace chronické obstrukční nemoci. In: Kašák V, Koblížek V (eds). Naléhavé stavy v pneumologii. Praha: Maxdorf Jessenius 2008: 250– 275.

28. Kim J, Rubin B. Nasal and sinus inflammation in chronic obstructive pulmonary disease. COPD 2007; 4: 163– 166.

29. Kim J, Rubin B. Nasal and sinus involvement in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2008; 14: 101– 104.

30. Kharitonov S, Pedersen L. Inhaled Mannitol and Ciliary Beat Frequency in COPD Patients. London: Imperial College 2007.

31. Koblížek V, Salajka F, Čermáková E et al. Vztah mezi kvalitou života a BODE indexem u bývalých kuřáků ve stabilní fázi chronické obstrukční plicní nemoci. Vnitř Lék 2009; 55: 940– 947.

32. Kopecký O, Lukešová Š, Koblížek V et al. Pozdní komplikace chronických zánětů respiračního traktu u nemocných s běžnou variabilní imunodeficiencí. Vnitř Lék 2006; 52: 1021– 1029.

33. Leynaert B, Bousquet J, Neukirch C et al. Perennnial rhinitis: An independent risk factor for asthma in nonatopic subjects: Results from the European Community Respiratory Health Survey. J Allergy Clin Immunol 1999; 104: 301– 304.

34. Musil J. Léčba chronické obstrukční plicní nemoci. Praha: Grada 1999.

35. Nihlén U, Andersson M, Löfdahl CG et al. Nasal neutrophil activity and mucinous secretory responsiveness in COPD. Clin Physiol Funct Imaging 2003; 23: 138– 142.

36. Pauk N. Současné možnosti léčby CHOPN. Stud Pneumol Phtiseol 2008; 5: 182– 190.

37. Pifferi O, Cangiotti A, Ragazzo V et al. Primary ciliary dyskinesia: Diagnosis in Children with inconclusive ultrastructural evaluation. Pediiatr Allergy Imunol 2001; 12: 274– 282.

38. Pistolesi M, Camiciottoli G, Paoletti M et al. Identification of a predominant COPD phenotype in clinical practice. Respir Med 2008; 102: 367– 376.

39. Raphael J, Strupish J, Selwyn D et al. Recovery of respiratory ciliary function after depression by inhalation anaesthetic agents: an in vitro study using nasal turbinate explants. Br J Anaesth 1996; 76: 854– 859.

40. Rankin H, Moody A, Moate R et al. Elevated oxygen fraction reduces cilial abundance in explanted human bronchial tissue. Ultrastruct Pathol 2007; 31: 339– 346.

41. Roberts N, Lloyd‑ Owen S, Rapado F et al. Relationship between chronic nasal and respiratory symptoms in patients with COPD. Respir Med 2003; 97: 909– 914.

42. Rogers DF. Mucus pathophysiology in COPD: differences to asthma, and pharmacotherapy. Monaldi Arch Chest Dis 2000; 55: 324– 332.

43. Rogers DF. Airway Mucus Secretion. In: Barnes PJ (ed). Chronic Obstructive Pulmonary Disease, Cellular and Molecular Mechanisms. Boca Raton, FL: Taylor Francis 2005: 83– 111.

44. Rutland J, Griffin W, Cole P. Human ciliary beat frequency in epithelium from intrathoracic and extrathoracic airways. Am Rev Respir Dis 1982; 125: 100– 105.

45. Salajka F. Proč hodnotit kvalitu života nemocných s bronchiální obstrukcí? Vnitř Lék 1999; 45: 480– 483.

46. Salajka F. Kvalita života nemocných s chronickou obstrukční plicní nemocí. Stud Pneumol Phtizeol 1997; 57: 137.

47. Salajka F. Kvalita života nemocných s bronchiální obstrukcí. Stud Pneumol Phtizeol 1997; 57: 262– 254.

48. Samolinski B, Szczesnowicz‑ Dabrowska P. Relationship between inflammation of upper and lower respiratory airways. Otolaryngol Pol 2002; 56: 49– 55.

49. Santamaria F, Grillo G, Sarnelli P et al. Ciliary motility at light microscopy: a screening technique for ciliary defects? Acta Paediatr 1999; 88: 853– 857.

50. Sisson J, Stoner J, Ammons B et al. All‑digital image capture and whole –  field analysis of ciliary beat frequency. J Microsc 2003; 211: 103– 111.

51. Shirakami G, Li D, Zhan X et al. Propofol stimulates ciliary motility via the nitric oxide- cyclic GMP pathway in cultured rat tracheal epithelial cells. Anesthesiology 2000; 93: 482– 488.

52. Sridhar S, Schembri F, Zeskind J et al. Smoking‑induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics 2008; 9: 259.

53. Stanley P, Wilson R, Greenstone M et al. Effect of cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax 1986; 41: 519– 523.

54. Togias AG. Systemic immunologic and inflammatory aspects of allergic rhinitis. J Allergy Clin Immunol 2000; 106 (Suppl 5): S247– S250.

55. Vachier I, Vignola AM, Chiappara G et al. Inflammatory features of nasal mucosa in smokers with and without COPD. Thorax 2004; 59: 303– 307.

56. van der Schans C, Piers D, Beekhuis H et al. Effect of forced expirations on mucus clearance in patients with chronic airflow obstruction: effect of lung recoil pressure. Thorax 1990; 45: 623– 627.

57. Verra F, Fleury‑ Feith J, Boucherat M et al. Do nasal ciliary changes reflect bronchial changes? An ultrastructural study. Am Rev Respir Dis 1993; 147: 908– 913.

58. Vondra V, Reisová M, Malý M. Metodologie zjišťování kvality života u nemocných s bronchiální obstrukcí. Stud Pneumol Phtiseol 2000; 60: 57– 62.

59. Vondra V, Reisová M, Malý M. Kvalita života u nemocných s bronchiální obstrukcí. Stud Pneumol Phtiseol 2000; 60: 73– 76.

60. Vondra V, Reisová M, Malý M. Kvalita života u nemocných s chronickou obstrukční plicní nemocí a bronchiálním astmatem. Čas Lék Čes 1998; 137: 455– 459.

61. Watson WT, Becker AB, Simons FE. Treatment of allergic rhinitis with intranasal corticosteroids in patients with mild asthma: Effect on lower airway responsiveness. J Allergy Clin Immunol 1993; 91: 97– 101.

62. Wright A, Holberg C, Martinez F et al. Epidemiology of physician- diagnosed allergic rhinitis in childhood. Pediatrics 1994; 94: 895– 901.

63. Yawn B, Yunginger J, Wollan P et al. Allergic rhinitis in Rochester, Minnesota residents with asthma: Frequency and impact on health care charges. J Allergy Clin Immunol 1999; 103: 54– 59.

64. Youngil I, Inseon S. Relationship be­tween Nasal and Bronchial Responsiveness in Perennial Allergic Rhinitic Patients with Asthma. Int Arch Allergy Immunol 2002; 129: 341– 347.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 11

2009 Issue 11

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#