#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A nanomedical approach for the rapid identification of viruses using electrochemical biosensors


Authors: K. Dunovská 1;  E. Klapková 1;  M. Fořtová 1;  J. Werle 1;  J. Petrus 1;  T. Grondžák 1;  B. Hosnedlová 2;  K. Kotaška 1;  J. Čepová 1;  R. Průša 1;  R. Kizek 1,2
Authors‘ workplace: 2. lékařská fakulta Univerzity Karlovy a Fakultní nemocnice Motol, Praha, Ústav lékařské chemie a klinické biochemie, Přednosta: prof. MUDr. Richard Průša, CSc. 1;  1. lékařská fakulta Univerzity Karlovy a Všeobecná fakultní nemocnice, Praha, Klinika pediatrie a dědičných poruch metabolismu, Přednosta: prof. MUDr. Tomáš Honzík, Ph. D. 2
Published in: Prakt. Lék. 2022; 102(4): 171-176
Category: Reviews

Overview

Aim: The review provides basic practical information about the use of biosensors in the rapid diagnosis of viral pathogens. Results: Thanks to evolutionary changes in the genome, viruses jump into the human population, where they cause serious epidemics. Rapid POCT diagnostic tools based on biosensors will enable their use for clinical diagnosis needs outside of specialized laboratories. The combination of these devices with the techniques of 3D printing, microfluidic systems, nanotechnology and electrochemical detection significantly increases the usability of biosensors. Intensive research is carried out on a wide range of viruses, e.g. HIV, Ebola, influenza, hepatitis viruses. In connection with the global covid-19 pandemic, the development of nanobiosensors is currently focused primarily on the detection of SARS-CoV-2.

Conclusion: Available literature data suggest that fast sensors and biosensors have considerable clinical potential for the use in POCT.

Keywords:

nanomedicine – Nanotechnology – biosensor – medical applications – virus detection


Sources

1. Banas D, Aksu DA, Noguera MV, et al. Electrochemical study of quantum dots-labeled oligonucleotide probes for detecting nucleic acid of African swine fever virus. Chem Listy 2020; 114(11): 778–783.
2. Skládal P. Advances in electrochemical immunosensors for pathogens. Cur Opin Electrochem 2019; 1466–1470.
3. Saylan Y, Erdem Ö, Ünal S. et al. An alternative medical diagnosis method: biosensors for virus detection. Biosensors 2019; 9(2): 65.
4. Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. Anal Method 2022; 14(30): 2885–2906.
5. Hushegyi A, Pihikova D, Bertok T, et al. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron 2016; 79(5): 644–649.
6. Rodrigo MAM, Heger Z, Cernei N, et al. HIV biosensors - the potential of the electrochemical way. Int J Electrochem Sci 2014; 9(7): 3449–3457.
7. Banas D, Rychly O, Salmistraro S, et al. Optimization of nucleic acid binding to magnetic particles with the aim of detection of dangerous viruses. 12th International Conference on Nanomaterials – Research and Application (NANOCON) 2020; 324–329.
8. Parida M, Sannarangaiah S, Dash PK, et al. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 2008; 18(6): 407–421.
9. Slinker JD, Muren NB, Renfrew SE, et al. DNA charge transport over 34 nm. Nat Chem 2011; 3(3): 228–233.
10. Wang YH, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39(11): 1348–1365.
11. Lockhart DJ, Dong HL, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14(13): 1675–1680.
12. Tavares JL, Cavalcanti IDL, Santos Magalhães NS, et al. Nanotechnology and COVID-19: quo vadis? J Nanopart Res 2022; 24(3): 62.
13. Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536–544.
14. Petrus J, Dunovska K, Klapkova E, et al. Infekce virem SARSCoV-2 u dětí se zhoubnými nádory: léčba remdesivirem. Prakt. Lék. 2022; 102(1): 6–12.

15. Alhalaili B, Popescu IN, Kamoun O, et al. Nanobiosensors for the detection of novel coronavirus 2019-nCoV and other pandemic/epidemic respiratory viruses: a review. Sensors 2020; 20(22): 6591 
16. Laghrib F, Saqrane S, El Bouabi Y, et al. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem J 2021; 160: 105606.
17. Layqah LA, Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim Acta 2019; 186(4): 224.
18. Fabiani L, Saroglia M, Galata G, et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens Bioelectron 2021; 171(1): 112686.
19. Hashemi SA, Golab Behbahan NG, Bahrani S, et al. Ultrasensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosens Bioelectronics 2021; 171(1): 112731.
20. Alafeef M, Dighe K, Moitra P, et al. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS nano 2020; 14(12): 17028–17045.
21. Eissa S, Zourob M. Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal Chem 2020; 93(3): 1826–1833.

22. Gargulak M, Docekalova M, Kepinska M, et al. 3D-printed CdTe QDs-based sensor for sensitive electrochemical detection of viral particles. IEEE Inter Conf Sens. Nanotechnol 2019; 125–128.
23. Krejcova L, Dospivova D, Ryvolova M, et al. Paramagnetic particles coupled with an automated flow injection analysis as a tool for influenza viral protein detection. Electrophoresis 2012; 33(21): 3195–3204.
24. Krejcova L, Nejdl L, Rodrigo MAM, et al. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens Bioelectron 2014; 54(4): 421–427.
25. Krejcova L, Hynek D, Adam V, et al. Electrochemical sensors and biosensors for influenza detection. Int J Electrochem Sci 2012; 7(11): 10779–10801.
26. Whitman JD, Hiatt J, Mowery CT, et al. Evaluation of SARSCoV-2 serology assays reveals a range of test performance. Nat Biotechnol 2020; 38(10): 1174–1178.
27. Turbe V, Herbst C, Mngomezulu T, et al. Deep learning of HIV field-based rapid tests. Nat Med 2021; 27(7): 1165–1168.
28. Krejcova L, Hynek D, Kopel P, et al. Development of a magnetic electrochemical bar code array for point mutation detection in the H5N1 neuraminidase gene. Viruses-Basel 2013; 5(7): 1719–1739.

Labels
General practitioner for children and adolescents General practitioner for adults
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#