#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Role of immunity in neoplasms, a double edge sword?


Authors: P. Šíma 1;  V. Bencko 2;  L. Vannucci 1
Authors‘ workplace: Mikrobiologický ústav, v. v. i., AV ČR, Praha, Ředitel: Ing. Jiří Hašek, CSc., Laboratoř imunoterapie, Vedoucí: Luca Vannucci, M. D., PhD. 1;  1. lékařská fakulta Univerzity Karlovy a Všeobecná fakultní nemocnice, Praha, Ústav hygieny a epidemiologie, Přednosta: prof. MUDr. Milan Tuček, CSc. 2
Published in: Prakt. Lék. 2020; 100(5): 211-214
Category: Reviews

Overview

For decades, malignant tumors have been among the infamous non-communicable diseases that most affect people around the world. Their origin, growth and spread to other body tissues are accompanied by specific immune manifestations, which are in principle identical, but differ in a number of essential aspects. The participation of immunity in the tumor process was not noticed by the medical public until the beginning of the twentieth century, when practically nothing was known about the structural nature and function of the immune system. All that was known was that immunity was directed primarily against infectious agents. It was only later that it became clear that there is also an anti-tumor immunity, which not only destroys malignant cells and suppresses their growth, but also selects more viable and more resistent tumor cells, thereby promoting their growth and metastatic spreading of the tumor. It is just the participation of immunity in the cancerogenesis that allows the use of biological therapy (immunotherapy) for the treatment of cancer.

Keywords:

trained natural immunity – immunological surveillance – cancer immunoediting – abscopal effect


Sources

1. Netea MG, Joosten LAB, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science 2016; 352(6284): aaf1098.

2. Santoni G, Cardinali C, Morelli MB, et al. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflam 2015; 12: 21.

3. Matzinger P. Tolerance, danger, and the extended family. Ann Rev Immunol 1994; 12: 991–1045.

4. Ehrlich P. Ueber den jetzigen stand der Karzinomforschung. Ned Tijdschr Geneeskd 1909; 5: 273–290.

5. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1957; 1(5022): 841–847.

6. Thomas L. Cellular and humoral aspects of the hypersensitive states. New York: Hoeber-Harper 1959.

7. Finn OJ. Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol Res 2017; 5(5): 347–354.

8. Balkwill F. Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255): 539–545.

9. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235–271.

10. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development. Int J Biol Sci 2011; 7(5): 651–658.

11. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3(11): 991–998.

12. Dunn GP, Old LJ, Schreiber RD. The immunobiology review of cancer immunosurveillance and immunoediting. Immunity 2004; 21(2): 137–148.

13. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol 2014; 27: 16–25.

14. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007; 121(1): 1–14.

15. Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer 2016; 138(2): 271–280.

16. Mole RH. Whole body irradiation-radiobiology or medicine? Brit J Radiol 1953; 26(305): 234–241.

17. Fučíková J, Bartůňková J, Špíšek R. 4S5Význam imunogenní buněčné smrti v protinádorové imunitě. Klin Onkol 2015; 28(Suppl 4): 4S48.

18. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017; 17(2): 97–111.

19. Ebbell B. The papyrus Ebers: the greatest egyptian medical document. Copenhagen: Levin and Munskgaard 1937.

20. Busch W. Aus der Sitzung der medizinischen Section vom 13 November 1867. Berlin Klin Wochenschr 1868; 5: 137.

21. Fehleisen F. Ueber die Züchtung der Erysipelkokken auf künstlichem Nährboden und ihre Übertragbarkeit auf den Menschen. Dtsch Med Wochenschr 1882; 8: 553–554.

22. Coley WB. The treatment of malignant tumors by repeated innoculations of erysipelas: with a report of ten original cases. Am J Med Sci 1893; 10: 487–511.

23. McCarthy EF. The toxin of William B. Coley and the treatment of bone and soft-tissue sarcomas, Iowa Orthop J 2006; 26, 154–158.

24. Bickels J, Kollender Y, Merinsky O, Meller I. Coley’s toxin: historical perspective, Israel Med Ass J 2002; 4(6): 471–472.

25. Łukasiewicz K, Fol M. Microorganisms in the treatment of cancer: advantages and limitations. J Immunol Res 2018; 6: 1–8.

26. Pearl R. Cancer and tuberculosis. Am J Hyg 1929; 9: 97–159.

27. Morales A, Eidinger D, Bruce AW. Intracavitary bacillus Calmette-Guérin in the treatment of superficial bladder tumor. J Urol 1976; 116(2): 180–183.

28. Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J Urol 2008; 179(1): 53–56.

29. Mohammed S, Bakshi N, Chaudri N, et al. Cancer vaccines: past, present, and future. Adv Anat Pathol 2016; 23(3): 180–191.

30. Xavier CPR, Lima CF, Preto A, et al. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett 200; 281(2): 162–170.

31. Hatkevich T, Ramos J, Santos-Sanchez I, Patel YM. A naringenin-tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Exp Cell Res 2014; 327(2): 331–339.

32. Mooradian MJ, Sullivan RJ. Immunomodulatory effects of current cancer treatment and the consequences for follow-up immunotherapeutics. Future Oncol 2017; 13(18): 1649–1663.

33. Koo SL, Wang WW, Toh HC. Cancer immunotherapy - the target is precisely on the cancer and also not. Ann Acad Med Singap 2018 47(9): 381–387.

34. van den Bulk J, Verdegaal EM, de Miranda NF. Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol 2018; 8(6): 180037.

35. Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive nanoparticles for cancer immunotherapy. Int J Mol Sci 2018; 19(12): 3877.

36. Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B 2019; 9(3): 469–483.

37. Brunet J-F, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 1987; 328(6127): 267–270.

38. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11(11): 3887–3895.

Labels
General practitioner for children and adolescents General practitioner for adults
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#