#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Antibiotics resistance and importance of the horizontal transmission of genetic information


Authors: V. Bencko 1;  P. Šíma 2
Authors‘ workplace: Ústav hygieny a epidemiologie 1. LF UK a VFN, Praha, Přednosta: prof. MUDr. Milan Tuček, CSc. 1;  Mikrobiologický ústav, v. v. i. AV ČR, Praha Laboratoř imunoterapie Vedoucí: Dr. Luca Vannucci, M. D., PhD. 2
Published in: Prakt. Lék. 2018; 98(5): 195-199
Category: Reviews

Overview

Antibiotic resistance today is a global problem of health care service. Not only does the number of diseases caused by resistant pathogenic strains of bacteria increase, but also the cost of treatment increases disproportionately, the length of hospitalization is prolonged, and mortality is often rising. Therefore, when indicating antibiotic therapy, it is important to keep in mind that both overuse and abuse of antibiotics contribute to the spread of antibiotic resistance genes. This is equally true for antibiotic applications in veterinary medicine, agriculture, including aquacultures, or in the food industry.

Genetic information is in prokaryotes transmitted as well horizontally (laterally), by direct exchange of genetic material across species barriers in which the exchange of genes or whole gene segments by horizontal transmission is quite common. They can dynamically and in a relatively short time generate highly diverse genomes, which does not allow the vertical transmission. As a result, prokaryotes can rapidly acquire new properties such as virulence and pathogenicity, as well as resistance to toxins, including antibiotics, by which they increase their adaptability. Therefore, reinfection-resistant microorganisms are always more difficult to treat than infections caused by non-resistant bacteria.

Keywords:

horizontal transmission of genetic information – antibiotic resistance – risks of the emergence and spread of antibiotic resistance – prevention of antibiotic resistance


Sources

1. Griffith F. The significance of pneumococcal types. J Hyg 1928; 27: 113–159.

2. Bencko V, Šíma P. Význam horizontálního přenosu genetické informace pro vznik antibiotické rezistence. Čas. Lék. čes. 2018; 157(3): 141–145.

3. Brinster RL, Braun RE, Lo D, et al. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc Natl Acad Sci USA 1989; 86: 7087–7091.

4. Choi IG, Kim SH. Global extent of horizontal gene transfer. Proc Nat Acad Sci USA 2007; 104(11): 4489–4494.

5. Li ZW, ShenYH, Xiang ZH, Zhang Z. Pathogen-origin horizontally transferred genes contribute to the evolution of lepidopteran insects. BMC Evol Biol. 2011; 11: 356 [online]. doi: 10.1186/1471-2148-11-356 [cit. 2018-07-09].

6. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994; 58: 563–602.

7. Ochman H, Lerat E, Daubin V. Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA; 2005; 102: 6595–6599.

8. Fernández-Gómez B, Fernàndez-Guerra A, Casamayor EO, et al. Patterns and architecture of genomic islands in marine bacteria. BMC Genomics 2012; 13: 347 [online]. doi: 10.1186/1471-2164-13-347 [cit. 2018-07-09].

9. Hacker J., Blum-Oehler G, Mühldorfer I, Tschäpe H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 1997; 23(6): 1089–1097.

10. Davidson J. Genetic exchange between bacteria in the environment. Plasmid 1999; 42: 73–91.

11. Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 1995; 15: 593–600.

12. Hall R, Collis C, Partridge S, et al. Mobile gene cassettes and integrons in evolution. Ann NY Acad Sci 1999; 870: 68–80.

13. Vogan AA, Higgs PG. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct 2011; 6: 1 [online]. doi: 10.1186/1745-6150-6-1 [cit. 2018-07-09].

14. Lederberg J, Tatum EL. Gene recombination in Escherichia coli. Nature 1946; 158: 558.

15. Tatum EL, Lederberg J. Gene recombination in the bacterium Escherichia coli. J Bacteriol 1947; 53: 673–684.

16. Burrus V, Waldor MK. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 2004; 155: 376–386.

17. Zinder ND, Lederberg J. Genetic exchange in Salmonella. J Bacteriol 1952; 64: 679–699.

18. McClintock B. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 1938; 23: 315–376.

19. McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics 1941; 26: 234–282.

20. Kondo N, Ijichi N, Shimada M, Fukatsu T. Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Mol Ecol 2002 11: 167–180.

21. Grimble GK. Why are dietary nucleotides essential nutrients. Brit J Nutr 1996; 76: 475–478.

22. Šíma P. Význam nukleotidů jako složky výživy pro růst, regeneraci a imunitu. Interní Med 2008; 10(12): 555–557.

23. Vuillemin P. Antibiose et symbiose. C R Assoc Fr Acad Sci 1889; 2: 525–543.

24. Waksman SA. The microbiology of soil and the antibiotics. In: Gladston I (ed.). The impact of the antibiotics on medicine and society. New York: International Universities Press Inc 1958.

25. D’Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature 2011; 477: 457–461.

26. Wright GD, Poinar H. Antibiotic resistance is ancient: implications for drug discovery. Trends Microbiol 2012; 20(4): 157–159.

27. Santiago-Rodriguez TM, Fornaciari G, Luciani S, et al. Gut microbiome of an 11th century A.D. Pre-columbian andean mummy. PloS One 2015; 10: e0138135 [online]. doi: 10.1371/journal.pone.0138135 [cit. 2018-07-09].

28. Emmerich R, Löw O. Bakteriolytische Enzyme als Ursache der erworbenen Immunität und die Heilung von Infectionskrankheiten durch dieselben. Zeitschr Hyg 1899; 31: 1–65.

29. Tiberio V. Sugli estratti di alcune muffe. Ann Igiene Speriment 1895; 5: 91–103.

30. Fleming A. Penicillin: The Robert Campbell Oration. Ulster Med J 1944; 13: 95–122.

31. O’Brien TF, del Pilar Pla M, Mayer KH, et al. Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science 1985; 230: 67–88.

32. Barber M, Rozwadovska-Dowzenko M. Infection by penicillin-resistant staphylococci. Lancet 1948; 255: 641–644.

33. Shanson DC. Short-course treatment of streptococcal endocarditis. J Antimicrob Chemother 1981; 8(6): 427–428. Dostupné z: https://doi.org/10.1093/jac/8.6.427

34. Jing C, Michel Jr FC, Sreevatsan S, et al. Occurrence and persistence of erythromycin resistance genes (ERM) and tetracycline resistance genes (TET) in waste treatment systems on swine farms. Microbial Ecol 2010; 60: 479–486.

35. Bencko V, Šíma P. Incidence of allergy and atopic disorders and hygiene hypothesis. Clin Oncol 2017; 2: 1244 [online]. Dostupné z: http://www.clinicsinoncology.com/full-text/cio-v2-id1244.php [cit. 2018-07-09].

36. Kaplan T. The role of horizontal gene transfer in antibiotic resistance. Eukaryon 2014; 10: 80–81.

Labels
General practitioner for children and adolescents General practitioner for adults
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#