#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Next generation probiotics: an overview of the most promising candidates


Authors: B. Dudík;  H. Kiňová Sepová;  G. Greifová;  F. Bilka;  A. Bílková
Authors‘ workplace: Katedra bunkovej a molekulárnej biológie liečiv, Farmaceutická fakulta, Univerzita Komenského, Bratislava
Published in: Epidemiol. Mikrobiol. Imunol. 71, 2022, č. 1, s. 48-56
Category: Review Article

Overview

Research in the field of human microbiota and its impact on human health has opened new possibilities for the diagnosis, prevention or treatment of certain pathological conditions. A negative change in the composition of the intestinal microbiota, dysbiosis, is associated with diseases such as inflammatory bowel diseases, obesity, diabetes mellitus, or Clostridium difficile infections. For the use of human microbiota or its biologically active products in clinical practice, it is necessary to thoroughly identify and characterize properties that may be beneficial to human health. The use of the latest technology enables such research to be carried out, and we are already aware of several potential candidates for the so-called probiotics of the next generation. The aim of this article is to summarize available information on the bacteria Akkermansia muciniphila, Bacteroides fragilis, and Faecalibacterium prausnitzii, which are among the most promising and studied candidates.

Keywords:

gut microbiota – next generation probiotics – Akkermansia muciniphila – Bacteroides fragilis – Faecalibacterium prausnitzii


Sources

1. Ozen M, Dinleyici EC. The history of probiotics: the untold story.  Benef Microbes, 2015;6(2):159–165. doi: 10.3920/BM2014.0103.
2. Sánchez B, Delgado S, Blanco‐Míguez A, et al. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res, 2017;61(1). doi: 10.1002/mnfr.201600240.
3. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv Nutr, 2019;10(suppl. 1):S49–S66. doi:10.1093/advances/nmy063.
4. De Vos WM, De Vos EAJ. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev, 2012;70 Suppl 1:S45–S56. doi: 10.1111/j.1753-4887.2012.00505.x.
5. Azad MAK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: An overview. Biomed Res Int, 2018;2018:9478630. doi:10.1155/2018/9478630.
6. Mohajeri MH, Brummer RJM, Rastall RA, et al. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr, 2018;57(Suppl 1):1–14. doi:10.1007/s00394-018-1703-4.
7. Almeida D, Machado D, Andrade JC, et al. Evolving trends in next-generation probiotics: a 5W1H perspective. Crit Rev Food Sci Nutr, 2020;60(11):1783–1796. doi:10.1080/10408398.2019.1599812.
8. Hill C, Guarner F, Reid G, et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol, 2014;11(8):506–514. doi: 10.1038/nrgastro.2014.66. 

9. Didari T, Mozaffari S, Nikfar S, Abdollahi M. Effectiveness of probiotics  in irritable bowel syndrome: Updated systematic review with meta-analysis. World J Gastroenterol, 2015;21(10):3072–3084. doi: 10.3748/wjg.v21.i10.3072.
10. Alfaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev, 2014;(4):CD005496. doi: 10.1002/14651858.CD005496.pub4.
11. Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic Review with Meta-Analysis: The efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther, 2017;46(4):389–400. doi:10.1111/apt.14203.
12. Goldenberg JZ, Yap C., Lytvyn L, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev, 2017;12(12):CD006095.doi: 10.1002/14651858.CD006095.pub4.
13. Zhu R, Chen K, Zheng YY, et al. Meta-analysis of the efficacy of probiotics in Helicobacter pylori eradication therapy. World J Gastroenterol, 2014;20(47):18013–18021. doi: 10.3748/wjg.v20.i47.18013.
14. Mansfield J, Bergin SJ, Cooper JR, Olsen CH. Comparative probiotic strain efficacy in the prevention of eczema in infants and children: a systematic review and meta-analysis. Mil Med, 2014;179(6):580–592. doi: 10.7205/MILMED-D-13-00546.
15. Gungor OE, Kirzioglu Z, Kivanc M. Probiotics: can they be used to improve oral health? Benef Microbes, 2015;6(5):647–656. doi:10.3920/BM2014.0167.
16. Ng SC, Hart AL, Kamm MA, Stagg AJ, et al. Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis,2009;15(2):300–310. doi: 10.1002/ibd.20602.
17. Patel R, Dupont HL. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis,2015;60 Suppl 2(Suppl 2):S108–121. doi: 10.1093/cid/civ177.
18. Martín R, Langella P. Emerging health concepts in the probiotics field: streamlining the definitions. Front Microbiol, 2019;10:1047.doi: 10.3389/fmicb.2019.01047.
19. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 2004;54(Pt 5):1469–1476. doi: 10.1099/ijs.0.02873-0.
20. Cani PD, Plovier H, Van Hul M, et al. Endocannabinoids – at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol, 2016;12:133–143. doi: 10.1038/nrendo.2015.211.
21. Sun J, Shen X, Li Y, et al. Therapeutic Potential to Modify the Mucus Barrier in Inflammatory Bowel Disease. Nutrients, 2016;8(1):44. doi: 10.3390/nu8010044.
22. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA, 2013;110(22):9066–9071.doi:10.1073/pnas.1219451110.
23. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014;63(5):727–735. doi: 10.1136/gutjnl-2012-303839.
24. Corfield AP. The interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms, 2018;6(3):78. doi:10.3390/microorganisms6030078.
25. Lordan C, Thapa D, Ross RP, et al. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes, 2020;11(1):1–20. doi:10.1080/19490976.2019.1613124.
26. Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One, 2013;8(8):e71108. doi:10.1371/journal.pone.0071108.
27. Grander C, Adolph TE, Wieser V, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut, 2018;67(5):891–901. doi: 10.1136/gutjnl-2016-313432.
28. Yassour M, Lim MY, Yun HS, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med, 2016;8(1):17. doi:10.1186/s13073-016-0271-6.
29. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog, 2017;106:171–181. doi: 10.1016/j.micpath.2016.02.005.
30. Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 2017;5(1):14. doi:10.1186/s40168-016-0222-x. 

31. Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014;63(12):1913–1920. doi: 10.1136/gutjnl-2013-306541.
32. Wu F, Guo X, Zhang M, et al. An Akkermansia muciniphila subtype alleviates high-fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice. Anaerobe, 2020;61:102138. doi: 10.1016/j.anaerobe.2019.102138.
33. Zhang L, Qin Q, Liu M, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis, 2018;76(4):fty028. doi:10.1093/femspd/fty028.
34. Yang M, Bose S, Lim S, et al. Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation. Microorganisms, 2020;8(9):1413.doi: 10.3390/microorganisms8091413.
35. Depommier C, Van Hul M, Everard A, et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020;11(5):1231–1245. doi: 10.1080/19490976.2020 1-15.
36. Katiraei S, de Vries MR, Costain AH, et al. Akkermansia muciniphila exerts lipid‐lowering and immunomodulatory effects without affecting neointima formation in hyperlipidemic APOE* 3‐Leiden. CETP mice. Mol Nutr Food Res, 2019;64(15):e1900732. doi: 10.1002/mnfr.201900732.
37. Li J, Lin S, Vanhoutte PM, et al. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation, 2016;133(24):2434–2446. doi: 10.1161/CIRCULATIONAHA. 115.019645.
38. Bian X, Wu W, Yang L, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol, 2019;10:2259. doi: 10.3389/fmicb.2019.02259.
39. Van Der Lugt B, Van Beek AA, Aalvink S, et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1−/Δ7 mice. Immun Ageing, 2019;16(1):6. doi: 10.1186/s12979-019-0145-z.
40. Zhu L, Lu X, Liu L, et al. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium.Vet Res, 2020;51(1):34. doi:10.1186/s13567-020-00755-3.
41. Kim S, Lee Y, Kim Y, et al. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol, 2020;86(7):e03004–19. doi:10.1128/AEM.03004-19.
42. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med, 2017;23(1):107–113. doi: 10.1038/nm.4236.
43. Wang L, Tang L, Feng Y, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut, 2020;69(11):1988–1997. doi: 10.1136/gutjnl-2019-320105.
44. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med, 2019;25(7):1096–1103. doi:10.1038/s41591-019-0495-2.
45. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev, 2009;22(2):349–369. doi:10.1128/ CMR.00053-08.
46. Zhang W, Zhu B, Xu J, et al. Bacteroides fragilis protects against antibiotic-associated diarrhea in rats by modulating intestinal defenses. Front Immunol, 2018;9:1040. doi:10.3389/fimmu.2018.01040.
47. Wexler AG, Goodman AL. An insider’s perspective: Bacteroides as a window into the microbiome. Nat Microbiol, 2017;2:17026. doi: 10.1038/nmicrobiol.2017.26.
48. Sun F, Zhang Q, Zhao J, et al. A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Res Int, 2019;126:108590. doi: 10.1016/j.foodres.2019.108590.
49. Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest, 2014;124(10):4166–4172. doi: 10.1172/JCI7233.
50. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008;453(7195):620–625. doi: 10.1038/nature07008.
51. Krinos CM, Coyne MJ, Weinacht KG, et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature, 2001;414(6863):555–558. doi: 10.1038/35107092.
52. Sittipo P, Lobionda S, Lee YK, Maynard CL. Intestinal microbiota and the immune system in metabolic diseases. J Microbiol, 2018;56(3):154–162. doi: 10.1007/s12275-018-7548-y.
53. Blandford LE, Johnston EL, Sanderson JD, et al. Promoter orientation of the immunomodulatory Bacteroides fragilis capsular polysaccharide A (PSA) is off in individuals with inflammatory bowel disease (IBD). Gut Microbes, 2019;10(5):569–577. doi:10.1080/19490976.2018.1560755.
54. Tzianabos AO, Russell PR, Onderdonk AB, et al. IL-2 mediates protection against abscess formation in an experimental model of sepsis. J Immunol, 1999;163(2):893–897.
55. Tzianabos AO, Finberg RW, Wang Y, et al. T cells activated by zwitterionic molecules prevent abscesses induced by pathogenic bacteria. J Biol Chem, 2000;275(10):6733–6740. doi:10.1074/jbc.275.10.6733.
56. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA, 2010;107(27):12204–12209. doi:10.1073/pnas.0909122107.
57. Shen Y, Giardino Torchia ML, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe, 2012;12(4):509–520. doi:10.1016/j.chom.2012.08.004.
58. Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011;332(6032):974–977. doi:10.1126/science.1206095.
59. Johnson JL, Jones MB, Cobb BA. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology,2015;25(4):368–375. doi: 10.1093/glycob/cwu117.
60. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science,2015;350(6264):1079–1084. doi:10.1126/science.aad1329.
61. Lee YK, Mehrabian P, Boyajian S, et al. The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer. mSphere, 2018;3(6):e00587–18. doi:10.1128/mSphere.00587-18.
62. Bukina YV, Varynskyi BO, Voitovich AV, et al. The definition of neutrophil extracellular traps and the concentration of shortchain fatty acids in salmonella-induced inflammation of the intestine against the background of vancomycin and Bacteroides fragilis. Pathologia, 2018;1(1):10–17. doi:10.14739/2310-1237.2018.1.128847.
63. Ramakrishna C, Kujawski M, Chu H, et al. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun, 2019;10(1):2153. doi:10.1038/s41467-019-09884-6.
64. Deng H, Li Z, Tan Y, et al. A novel strain of Bacteroides fragilis enhances phagocytosis and polarises M1 macrophages. Sci Rep,2016;6:29401. doi: 10.1038/srep29401.
65. Wang Q, McLoughlin RM, Cobb BA, et al. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2.J Exp Med, 2006;203(13):2853–2863. doi:10.1084/jem.20062008.
66. Hecht AL, Casterline BW, Earley ZM, et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep, 2016;17(9):1281–1291. doi: 10.15252/embr.201642282.
67. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA, 2008;105(43):16731–16736. doi:10.1073/pnas.0804812105.
68. Rajilić–Stojanović M, Biagi E, Heilig HG, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 2011;141(5):1792–1801. doi: 10.1053/j.gastro.2011.07.04. 

69. Schippa S, Iebba V, Santangelo F, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients. PloS One,2013;8(4):e61176. doi: 10.1371/journal.pone.0061176.
70. Miquel S, Martin R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol, 2013;16(3):255–261. doi: 10.1016/j.mib.2013.06.003.
71. Cao Y, Shen J, Ran ZH. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature. Gastroenterol Res Pract, 2014;2014:872725. doi:10.1155/2014/872725.
72. Laffin MR, Tayebi Khosroshahi H, Park H, et al. Amylose resistant starch (HAM‐RS2) supplementation increases the proportion of Faecalibacterium bacteria in end‐stage renal disease patients: microbial analysis from a randomized placebo‐controlled trial.Hemodial Int, 2019;23(3):343–347. doi: 10.1111/hdi.12753.
73. Miquel S, Leclerc M, Martin R, et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio, 2015;6(2):e00300–e00315. doi: 10.1128/mBio.00300-15.
74. Ramirez-Farias C, Slezak K, Fuller Z, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. B J Nutr, 2008;101(4):541–550. doi: 10.1017/S0007114508019880.
75. Miquel S, Martín R, Bridonneau C, et al. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microb, 2014;357(6351):570–575. doi:10.1126/science.aam9949.
76. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol, 2011;45 Suppl:S120–127. doi: 10.1097/MCG.0b013e31822fecfe.
77. Byndloss MX, Olsan EE, Rivera-Chávez F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 2017;357(6351):570–575. doi: 10.1126/science.aam9949.
78. Kawade Y, Sakai M, Okamori M, et al. Administration of live, but not inactivated Faecalibacterium prausnitzii has a preventive effect on dextran sodium sulfate-induced colitis in mice. Mol MedRep, 2019;20(1):25–32. doi: 10.3892/mmr.2019.10234.
79. Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 2014;63(8):1275–1283. doi: 10.1136/gutjnl-2013-304833.
80. Quévrain E, Maubert MA, Michon C, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut, 2016;65(3):415–425. doi: 10.1136/gutjnl-2014-307649.
81. Xu J, Liang R, Zhang W, et al. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes, 2020;12(3):224–236. doi:10.1111/1753-0407.12986. 

82. Min XH, Yu T, Qing Q, et al. Abnormal differentiation of intestinal epithelium and intestinal barrier dysfunction in diabetic mice associated with depressed Notch/NICD transduction in Notch/Hes1 signal pathway. Cell Biol Int, 2014;38(10):1194–1204.
83. Pasini E, Corsetti G, Assanelli D, et al. Effects of chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes. Minerva Med, 2019;110(1):3–11. doi: 10.23736/S0026-4806.18.05589-1.
84. Hao Z, Wang W, Guo R, Liu H. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behaviour in rats. Psychoneuroendocrinology, 2019;104:132–142. doi: 10.1016/j.psyneuen.2019.02.025.
85. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry, 2013;74:720–726. doi: 10.1016/j.biopsych.2013.05.001.
86. O’Toole PW, Paoli M. The contribution of microbial biotechnology to sustainable development goals: microbiome therapies. Microb Biotechnol, 2017;10(5):1066–1069. doi:10.1111/1751-7915.12752.
87. van der Ark KC, Nugroho ADW, Berton-Carabin C, et al. Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions. Food Res Int, 2017;102:372–379. doi: 10.1016/j.foodres.2017.09.00.
88. Khan MT, van Dijl JM, Harmsen HJ. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One, 2014;9(5):e96097. doi:10.1371/journal.pone.0096097.
89. Gibson G, Hutkins R, Sanders M, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol, 2017;14(8):491–502. Dostupné na www: https://doi.org/10.1038/nrgastro.2017.75.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology

Article was published in

Epidemiology, Microbiology, Immunology

Issue 1

2022 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#