#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Favourable prognosis of solitary kidney in children?


Authors: G. Koľvek 1;  Ľ. Podracká 2
Authors‘ workplace: Klinika detí a dorastu, LF UPJŠ a DFN, Košice 1;  I. detská klinika LFUK a DFNsP, Bratislava 2
Published in: Čes-slov Pediat 2015; 70 (5): 282-286.
Category: Original Papers

Overview

This study aims to assess the cumulative incidence of elevated albuminuria, hypertension and decreased estimated glomerular filtration rate (eGFR) to identify possible renal injury in children with SFK. Forty-two children with SFK (23 boys; 27 congenital) were included in a prospective follow-up study. Blood pressure, albuminuria and eGFR were assessed repeatedly and the cumulative incidence rate of various forms of renal injury, overall and by type of etiology, were evaluated. Finally, renal injury-free survival was analyzed. Mean follow-up was until age 11.3 years (SD 6.3 years). During follow-up, 16/42 (38.1%) patients met the criteria for renal injury, defined as hypertension (10/42; 23.8%), severely increased albuminuria (3/42; 7.1%) and a significantly impaired eGFR (<60 ml/min/1.73 m2) (5/42; 11.9%) and/or use of antihypertensive or antiproteinuric medication (11/42; 26.2%). Children with CAKUT in SFK had a significantly higher incidence of renal injury. The median time to develop renal injury was 12.8 years.

Conclusion:
A substantial proportion of children with SFK develop renal injury during childhood, especially those with CAKUT in the SFK. Therefore, close follow-up of albuminuria, blood pressure and eGFR are warranted to identify chronic kidney disease in its early stages.

Key words:
albuminuria, children, glomerular filtration rate, hypertension, solitary kidney


Sources

1. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1988; 1: 335–347.

2. Hostetter TH, Olson JL, Rennke HG, et al. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 1981; 241: F85–93.

3. Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol 1985; 249: F324–337.

4. Brenner BM, Mackenzie HS. Nephron mass as a risk factor for progression of renal disease. Kidney Int 1997; 63 (Suppl): S124–127.

5. Hoy WE, Hughson MD, Singh GR, et al. Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int 2006; 70: 104–110.

6. Keller G, Zimmer G, Mall G, et al. Nephron number in patients with primary hypertension. N Engl J Med 2003; 348: 101–108.

7. Siomou E, Giapros V, Papadopoulou F, et al. Growth and function in childhood of a normal solitary kidney from birth or from early infancy. Pediatr Nephrol 2014; 29: 249–256.

8. Bertram JF, Douglas-Denton RN, Diouf B, et al. Human nephron number: implications for health and disease. Pediatr Nephrol 2011; 26: 1529–1533.

9. Hoy WE, Rees M, Kile E, et al. A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int 1999; 56: 1072–1077.

10. Goldfarb DA, Matin SF, Braun WE, et al. Renal outcome 25 years after donor nephrectomy. J Urol 2001; 166: 2043–2047.

11. Hakim RM, Goldszer RC, Brenner BM. Hypertension and proteinuria: long-term sequelae of uninephrectomy in humans. Kidney Int 1984; 25: 930–936.

12. Robitaille P, Mongeau JG, Lortie L, et al. Long-term follow-up of patients who underwent unilateral nephrectomy in childhood. Lancet 1985; 1: 1297–1299.

13. Abou Jaoude P, Dubourg L, Bacchetta J, et al. Congenital versus acquired solitary kidney: is the difference relevant? Nephrol Dial Transplant 2010; 26: 2188–2194.

14. Argueso LR, Ritchey ML, Boyle ET Jr, et al. Prognosis of children with solitary kidney after unilateral nephrectomy. J Urol 1992; 148: 747–751.

15. Argueso LR, Ritchey ML, Boyle ET Jr, et al. Prognosis of patients with unilateral renal agenesis. Pediatr Nephrol 1992; 6: 412–416.

16. Sanna-Cherchi S, Ravani P, Corbani V, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 2009; 76: 528–533.

17. Westland R, Kurvers RA, van Wijk JA, et al. Risk factors for renal injury in children with a solitary functioning kidney. Pediatrics 2013; 131: e478–485.

18. Kidney Disease: Improving Global Outcomes Clinical Practice Guidelines for the Evaluation and Management of Chronic Kidney Disease. Kidney Int 2013; Suppl 3: 15–18.

19. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114: 555–576.

20. Mogensen CE, Vestbo E, Poulsen PL, et al. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care 1995; 18: 572–581.

21. Schwartz GJ, Haycock GB, Edelmann CM Jr, et al. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58: 259–263.

22. Schwartz GJ, Munoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol 2009; 20: 629–637.

23. Kolvek G, Podracka L, Rosenberger J, et al. Solitary functioning kidney in children – a follow-up study. Kidney Blood Press Res 2014; 39: 272–278.

24. Saran R, Marshall SM, Madsen R, et al. Long-term follow-up of kidney donors: a longitudinal study. Nephrol Dial Transplant 1997; 12: 1615–1621.

25. Okuda S, Motomura K, Sanai T, et al. Influence of age on deterioration of the remnant kidney in uninephrectomized rats. Clin Sci (Lond) 1987; 72: 571–576.

26. Chevalier RL. When is one kidney not enough? Kidney Int 2009; 76: 475–477.

27. Janda J, Stolcova P, Sikut M, et al. The solitary kidney in children and adolescents. Morphologic and functional characteristics. Čes-slov Pediat 1991; 46: 195–199.

28. Seeman T, Patzer L, John U, et al. Blood pressure, renal function, and proteinuria in children with unilateral renal agenesis. Kidney Blood Press Res 2006; 29: 210–215.

29. Ardissino G, Testa S, Dacco V, et al. Puberty is associated with increased deterioration of renal function in patients with CKD: data from the ItalKid Project. Arch Dis Child 2012; 97: 885–888.

30. ESPN/ERA-EDTA Registry. ESPN/ERA-EDTA Registry 2010 annual report. Academic Medical Center, Department of Medical Informatics, Amsterdam. 2012.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#