#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bone Mineral Density in Cystic Fibrosis Patients – Results of a 3-years Folow-up and Intervention


Authors: E. Ondrušová-Očenášková 1;  Hubert Vaníček 1;  A. Jebavá 2
Authors‘ workplace: Dětská klinika LF a FN, Hradec Králové přednosta prof. MUDr. M. Bayer, CSc. 1;  Ústav klinické biochemie a diagnostiky FN, Hradec Králové přednosta prof. MUDr. V. Palička, CSc. 2
Published in: Čes-slov Pediat 2008; 63 (12): 660-667.
Category: Original Papers

Overview

Objectives:
Low bone mineral density (BMD) in cystic fibrosis (CF) patients is a problem of multifactorial origin. The aim of this analysis was to assess prospectively BMD in CF patients and the effect of vitamin D (vit. D) and calcium (Ca) supplementation adjustment.

Patients:
45 CF patients (aged 4.3–45 years, 27 female, 27 % >18 years).

Methods:
Lumbar spine BMD (L1–L4) was measured by DXA (dual-energy X-ray absorptiometry), correction of BMD Z-score was conducted according to height and weight. Other parameters: anthropometry, FEV1, serum levels of Ca, 25-(OH)-vit. D and 1,25-(OH)₂-vit. D, alkaline phosphatase (ALP), calciuria. Measurements were repeated yearly, conducted altogether 4x. Ergocalciferol and Ca supplementation were adjusted according to calciuria every 3 months.

Results:
Weight, height and BMI were lower than normal (mean Z-score (SD) = -1.2 (1.14), -1.01 (1.16) a -0.48 (0.90)). Weight and height Z-score did not change during follow up, BMI Z-score decreased. BMD was lower than in normal population in all measurements (mean Z-score (SD) = -1.7 (1.0), -1.2 (0.9), -1.3 (1.1), -1.4 (1.0), p <0.001), even after correction according to weight and height. Between the 1st and 2nd measurement BMD Z-score increased in patients aged <18 years (p = 6.6 x 10-7), then stayed stabilized. BMD Z-score in patients aged >18 years did not change significantly. Vit. D and Ca supplementation was increased between the 1st and 2nd measurement. 25-(OH)-vit. D a 1,25-(OH)₂-vit. D levels were normal and did not change significantly. However, 70% values of 25-(OH)-vit. D levels were <75 nmol/l (the lower limit of levels recommended for CF patients by the international consensus). Calciuria was in normal range and decreased by the time.

Conclusions:
Low BMD may be present already in prepubertal CF patients. Vitamin D and Ca supplementation adjustment according to calciuria may help to improve lumbar spine BMD in CF patients.

Key words:
bone mineral density, calcium, cystic fibrosis, DXA, osteoporosis,

vitamin D


Sources

1. Hahn TJ, Squires AE, Halstead LR, et al. Reduced serum 25-hydroxyvitamin D concentration and disordered mineral metabolism in patients with cystic fibrosis. J. Pediatr. 1979;94(1): 38–42.

2. Očenášková E, Vaníček H. Kostní postižení u cystické fibrózy. Osteologický Bulletin 2006;11(4):104–110.

3. Aris RM, Merkel PA, Bachrach LK, et al. Consensus Conference Report: Guide to bone health and disease in cystic fibrosis. J. Clin. Endocrinol. Metab. 2005;90: 1888–1896.

4. Elkin SL, Fairney A, Burnett S, et al. Vertebral deformities and low bone mineral density in adults with cystic fibrosis: a cross-sectional study. Osteoporos. Int. 2001;12: 366–372.

5. Chavasse RJ, Francis J, Balfour-Lynn I, et al. Serum vitamin D levels in children with cystic fibrosis. Pediatr. Pulmonol. 2004;38: 119–122.

6. Boyle MP, Noschese ML, Watts SL, et al. Failure of high-dose ergocalciferol to correct vitamin D deficiency in adults with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2005;172: 212–217.

7. Buntain HM, Greer RM, Schluter PJ, et al. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study. Thorax 2004;59: 149–155.

8. Boyle MP, Noschese ML, Watts SL, et al. Prevalence of 25-hydroxyvitamin D deficiency in adults with CF and effect of high dose ergocalciferol supplementation. Ped. Pulmonol. 2003;25: S350.

9. Lesný P, Krásničanová H. Kompendium pediatrické auxologie 2005.

10. Fok J, Brown NE, Zuberbuhler P, et al. Low bone mineral density in cystic fibrosis patients. Can. J. Diet. Pract. Res. 2002;63: 192–197.

11. Ujhelyi R, Treszl A, Vasarhelyi B, et al. Bone mineral density and bone acquisition in children and young adults with cystic fibrosis: a follow-up study. J. Pediatr. Gastroenterol. Nutr. 2004;38: 401–406.

12. Sermet-Gaudelus I, Souberbielle JC, Ruiz JC, et al. Low bone mineral density in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007;175: 951–957.

13. Kerem E, Conway S, Elborn S, et al. Standards of care for patients with cystic fibrosis: a European consensus. J. Cyst. Fibros. 2005;4:.7–26.

14. Haworth CS, Selby PL, Horrocks AW, et al. A prospective study of change in bone mineral density over one year in adults with cystic fibrosis. Thorax 2002;57: 719–723.

15. Schulze KJ, Cutchins C, Rosenstein BJ, et al. Calcium acquisition rates do not support age-appropriate gains in total body bone mineral content in prepuberty and late puberty in girls with cystic fibrosis. Osteoporos. Int. 2006;17: 731–740.

16. Buntain HM, Schluter PJ, Bell SC, et al. Controlled longitudinal study of bone mass accrual in children and adolescents with cystic fibrosis. Thorax 2006;6: 146–154.

17. Giron RM, Sanchez Molini P, Garcia Vadillo A, et al. Efectividad en la aplicación de tres protocolos de prevención y tratamiento de la osteoporosis en pacientes adultos con fibrosis quística. [Protocol for prevention and treatment of osteoporosis in patients with cystic fibrosis]. Med. Clin. (Barc). 2005;125: 325–328.

18. Gronowitz E, Garemo M, Lindblad A, et al. Decreased bone mineral density in normal-growing patients with cystic fibrosis. Acta Paediatr. 2003;92: 688–693.

19. Conway SP, Morton AM, Oldroyd B, et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax 2000;55: 798–804.

20. Sood M, Hambleton G, Super M, et al. Bone status in cystic fibrosis. Arch. Dis. Child. 2001;84: 516–520.

21. Aris RM, Renner JB, Winders AD, et al. Increased rate of fractures and severe kyphosis: sequelae of living into adulthood with cystic fibrosis. Ann. Intern. Med. 1998;128: 186–193.

22. Gibbens DT, Gilsanz V, Boechat MI, et al. Osteoporosis in cystic fibrosis. J. Pediatr. 1988;113: 295–300.

23. Haworth CS, Selby PL, Webb AK, et al. Low bone mineral density in adults with cystic fibrosis. Thorax 1999;54: 961–967.

24. Očenášková E, Liebhardt K, Stern M, et al. The muscle-bone relationship in cystic fibrosis patients. Čes.-slov. Pediat. 2007;62: 204–212.

25. Stephenson A, Jamal S, Dowdell T, et al. Prevalence of vertebral fractures in adults with cystic fibrosis and their relationship to bone mineral density. Chest 2006;130: 539–544.

26. Benden C, Jaffe A, Williams JE, et al. Bone mineralisation and turnover in 8 to 12 year-old children with cystic fibrosis. J. Cyst. Fibros. 2005;4: S84.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#