#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Klinický obraz spinální muskulární atrofie u dospělých pacientů


Authors: T. Horák 1;  J. Bednařík 1;  M. Horáková 1;  D. Botiková 2;  S. Voháňka 1
Authors‘ workplace: Neurologická klinika, ERN-EURO NMD Centrum, LF MU a FN Brno 1;  Rehabilitační oddělení, LF MU a FN Brno 2
Published in: Cesk Slov Neurol N 2020; 83/116(Supplementum 2): 13-16
doi: https://doi.org/10.48095/cccsnn20202S13

Overview

Spinální muskulární atrofie (SMA) je fenotypicky heterogenní onemocnění. Přestože u většiny pacientů významně zkracuje délku dožití a omezuje jejich motorické schopnosti, pacienti se SMA typu III a IV se dožívají dospělého věku. Díky asociaci s vyšším počtem kopií SMN2 genu a jinými protektivními faktory mají v ně­kte­rých případech minimální motorické postižení. Přesné údaje o prevalenci tohoto onemocnění u dospělých pacientů však dosud nejsou známé. V dospělém věku existují kromě klasické 5q13 formy SMA i další vzácné genetické formy SMA s pozdním začátkem a dominantním postižením na dolních končetinách, které je z klinického a terapeutického hlediska nutné odlišit. S rozvojem terapie SMA vznikla potřeba klinického hodnocení úspěšnosti léčby a definice standardů multidisiciplinární péče, které mají u dospělých pacientů se SMA svá specifika.

Klíčová slova:

spinální svalová atrofie – dospělí – motorický neuron – Kennedyho choroba – diferenciální diagnostika

Úvod

Spinální muskulární atrofie (SMA) se řadí mezi tzv. vzácná onemocnění. Epidemiologické údaje jsou napříč literaturou velmi variabilní s rozmezím udávané prevalence 1,4–13,0 na 100 000 obyvatel, nicméně nejčastěji je prevalence je udávána průměrně 2 na 100 000 [1]. V ČR tak zřejmě žije okolo 200 pacientů s tímto onemocněním. Přesné údaje o prevalenci SMA u dospělých však neexistují. Z incidence tohoto onemocnění 10 (5–18) na 100 000 živě narozených dětí – SMA typ I (58 %), typ II (29 %), typ III (13 %), typ IV (1 %) – a průměrné délky dožití do dospělosti u jednotlivých typů SMA – typ I (1 %), typ II (75–93 %), typ III (99,9 %), typ IV (100 %) – můžeme odvodit, že dospělého věku se každoročně dožijí 3–4 pacienti s touto chorobou. Můžeme tak tedy odhadovat, že v ČR žije okolo 80 dospělých pacientů se SMA (typu II 44 %, typu III 49 % a typu IV 7 %) (obr. 1). Přesné údaje o prevalenci SMA u dospělých v ČR v budoucnu poskytne projekt REaDY (REgistry of muscular DYstrophy) zahrnující také registr pacientů se SMA [2].

Distribuce typů SMA v dospělé populaci odhadovaná z údajů o incidenci, prevalenci a průměrné délce dožití.<br>
Fig. 1. Distribution of SMA types in the adult population estimated from the incidence,
prevalence and life expectancy data.
Image 1. Distribuce typů SMA v dospělé populaci odhadovaná z údajů o incidenci, prevalenci a průměrné délce dožití.
Fig. 1. Distribution of SMA types in the adult population estimated from the incidence, prevalence and life expectancy data.

Vzhledem k absenci kauzální terapie do roku 2016 (FDA [Food and Drug Administration] schválila nusinersen pro léčbu všech typů 5q SMA v prosinci 2016 a EMA [European Medicines Agency] v červnu 2017) byli zejména dospělí pacienti dispenzarizováni mimo nervosvalová centra a jednotliví lékaři, obvykle ambulantní neurologové a praktiční lékaři, měli ve své péči nanejvýš jednotky pacientů. SMA je však komplexní onemocnění, které postihuje pacienta multiorgánově a již dlouhou dobu je známá skutečnost, že komplexní multidisciplinární péče a dodržování standardů péče (standards of care; SoC) zlepšuje kvalitu života a prodlužuje dožití u všech typů SMA [3,4]. S rozvojem léčby se situace změnila a vznikla potřeba důslednější organizace a hierarchizace péče vč. hodnocení efektivity finančně nákladné terapie s nutností použití hodnotících škál v rámci centrové péče.

Spinální muskulární atrofie a její specifika u dospělých

Jedná se o dědičné autozomálně recesivní, progresivní neurodegenerativní onemocnění způsobené nejčastěji mutací genu SMN1 (survival motor neuron 1) s odlišnými klinickými podtypy [5]. Je způsobeno degenerací alfa motoneuronů míchy, což má za následek progredující atrofii svalů, svalovou slabost predominantně na dolních končetinách a nakonec paralýzu [6]. Široká škála klinické manifestace u dospělých pacientů je dána různými faktory, z nichž dominantní roli zřejmě hraje počet kopií genu SMN2 [7], který je běžně odpovědný za 10 % produkce proteinu SMN. U nejběžnějšího genetického typu SMA podmíněného mutací genu SMN1 rozlišujeme 4, resp. 5 klinických forem (0–IV) na podkladě maximální dosažené motorické funkce a věku rozvoje prvních klinických příznaků [8]. Typy II–IV se běžně dožívají dospělého věku.

Z klinického hlediska je výhodné dělení na SMA s časným a pozdním začátkem. Zatímco přirozený průběh choroby je u pacientů se SMA s časným začátkem (early onset SMA; typ I–IIIa) velmi dobře popsán, u pozdních forem onemocnění (late onset SMA; typy IIIb a IV) je informací o přirozeném průběhu podstatně méně (tab. 1) [9].

Table 1. Klasifikace typů a podtypů SMA dle dosaženého stupně motorického vývoje.
Klasifikace typů a podtypů SMA dle dosaženého stupně motorického vývoje.
SMA – spinální muskulární atrofie

Spinální muskulární atrofie s časným začátkem

Pacienti se SMA typu I se dospělého věku dožívají jen vzácně (1 % případů, typ Ic) [10,11]. Předpokladem je intenzivní pulmonologická péče s využitím moderních respiračních pomůcek, umělé plicní ventilace nebo také kvalitní péče o výživu pomocí gastrostomie.

Pacienti klinické formy typu II (Dubowitz) se dožívají dospělého věku v 75–93 % [10]. Klinický průběh se vyznačuje obdobím zpomalení progrese. Progredující skolióza a kontraktury jsou však u této skupiny pacientů velmi časté, vyvíjejí se již od počátku a téměř vždy v dospělosti vyžadují zvláštní ortopedickou péči. Často se vyskytuje slabost žvýkacích svalů, potíže s polykáním a časné respirační onemocnění se širokým spektrem závažnosti.

SMA typu III (choroba Kugelberg-Welander) je mírnější formou SMA charakteristickou pomalou progresí. Pacienti s tímto typem SMA si často zachovávají schopnost stát a chodit až do dospělosti [12], přestože někteří mohou tuto schopnost ztratit, a někdy tak využívají mechanický invalidní vozík. Tuto skupinu dělíme na typy IIIa a IIIb. Typ IIIa s rozvojem klinických příznaků nemoci do 3 let věku má mírně sníženou délku života se zpožděným motorickým vývojem. Pacienti se SMA typu IIIa mají ortopedické problémy, které jsou srovnatelné s těmi, které se vyskytují u dospělých pacientů se SMA typu II, i když obecně s pozdějším nástupem a sníženou závažností nemoci. Typ IIIb již řadíme k tzv. SMA s pozdním začátkem.

Spinální muskulární atrofie s pozdním začátkem

Typ IIIb jsou spolu se SMA typu IV asociovány s vyšším počtem kopií SMN2, obvykle v počtu 4 kopií [9]. SMA typu IIIb se vyznačuje nástupem po 3. roce života, normální délkou života a normálním vývojem motoriky. Pacienti se SMA typu IIIb mají ortopedické potíže pouze mírné. Vyskytuje se obvykle mírná slabost dolních končetin projevující se obtížemi při stoupání do schodů a nejistou „chvějící se“ chůzí.

Dospělý typ SMA IV je charakterizován pozdním nástupem nemoci během druhé nebo spíše třetí dekády a normální délkou života. Mírný průběh nemoci se projevuje plně zachovanou schopností chůze. Respirační a nutriční problémy jsou velmi vzácné a tito pacienti obvykle nemají potřebu respirační asistence [13].

Existují i další vzácné genetické formy SMA s pozdním začátkem a dominantním postižením na dolních končetinách, které je z klinického a terapeutického hlediska nutné odlišit od klasické 5q13 formy SMA. Ty byly v posledních letech popsány zejména díky pokroku v lékařské genetice (sekvenace nové generace), který umožnil zkoumání molekulárních mechanizmů, jež způsobují degeneraci motorických neuronů.

Diferenciální dia­gnostika SMA s pozdním začátkem

Druhým nejčastějším genetickým onemocněním, jež způsobuje degeneraci motorických neuronů a je nutné jej diferenciálně dia­gnosticky odlišit od jiných SMA typů, které se mohou objevit během dospívání či v dospělosti, je bulbospinální muskulární atrofie (SBMA) známá také jako Kennedyho choroba. Genetickým podkladem je expanze CAG tripletů androgenového receptorového genu chromozomu X, jejíž velikost koreluje se závažností a časností rozvoje klinických příznaků. Dědičnost je gonozomálně recesivní a na rozdíl od SMA se projevuje pouze u mužů. Klinický obraz se rozvíjí mezi 20. a 70. rokem života a zahrnuje svalové atrofie, slabost a fascikulace, zvláště v bulbární oblasti (jazyk, mimické svaly) a dále u proximálních svalů na končetinách. Dalšími příznaky jsou gynekomastie, tremor rukou, svalové bolesti a krampi. Jeho prevalence se odhaduje na 1–2/ 100 000 obyvatel [14].

Ostatní geneticky podmíněné typy SMA s pozdním začátkem:

Spinální svalová atrofie typ Jokela (SMAJ) – spinální motorická neuronopatie s pozdním rozvojem (LOSMoN). Onemocnění je způsobené mutací v genu CHCHD10 (kódující protein působící v mitochondriální membráně), při jehož dysfunkci dochází k narušení procesu oxidativní fosforylace. Onemocnění je charakteristické pozdním rozvojem klinických potíží okolo 40. roku života (14–70 let). V klinickém obraze dominují křeče, fascikulace a areflexie. Vzácně se mohou vyskytovat bulbární nebo respirační příznaky. Mutace v genu CHCHD10 byla zatím ve spojení se SMA popsána pouze u finské populace [15].

SMA typ Finkel (SMA-FK) byla popsána u populace v Brazílii. Je způsobená mutací v genu VAPB, který za normálních okolností kóduje protein působící v endoplazmatickém retikulu motoneuronů. Při disfunkci endoplazmatického retikula tak dochází k nahromadění proteinů uvnitř nervových buněk a následně k jejich poškození a smrti. Onemocnění se rozvíjí typicky okolo 45. roku života [16,17].

SMA s predominantní postižením dolních končetin (SMA-LED) je způsobené mutací genu DYNC1H1. Je velmi variabilní co se týká věku rozvoje klinických příznaků, ale v dospělosti se rozvíjí pouze minoritně. Jak odkazuje název, postihuje převážně dolní končetiny, a způsobuje tak charakteristickou postavu tvarem připomínající postavu kulturisty [18,19].

SMA s postižením srdce s mutací v genu LMNA s proximální svalovou slabostí s atrofií bylo popsáno u dvou rodin [20,21] a způsobuje srdeční arytmii.

V neposlední řadě ně­kte­ré klasifikace řadí pod SMA určité typy hereditárních motorických neuropatií (HMN) někdy též nazývané distální SMA (dSMA) [22,23]. Patří sem např. kongenitální distální SMA (scapuloperoneální SMA [SPSMA]), která je způsobená mutací v genu TRPV4. Jedná se o vzácné autozomálně dominantní onemocnění, pro které jsou charakteristické pes cavus, distální oslabení končetin, oslabení hlasivkových svalů (dysfonie) a skolióza. Mutace se vyskytují převážně v doméně proteinu, která je významnou součástí iontového kanálu pro Ca2+ a další kationty.

Mimo onemocnění s postižením periferního motorického neuronu se známou genetickou podstatou je potřeba diferenciálně dia­gnosticky odlišit progresivní svalovou atrofii (PMA). Ta je často nomenklaturně řazená jako varianta amyotrofické laterální sklerózy (ALS). Od ALS se liší absencí postižení centrálního motorického neuronu v počátku onemocnění, které ale většina pacientů s postupující progresí onemocnění rozvine [24,25]. I z tohoto důvodu je stále předmětem diskuzí a kontroverze, zda se jedná o formu ALS či samostatnou nozologickou jednotku.

Postižení motorických a dechových funkcí a jejich hodnocení

Nedílnou součástí klinického obrazu SMA u dospělých pacientů jsou onemocnění pohybového aparátu, kdy pozorujeme zejména omezený rozsah pohybu v kloubech [26]. Zatímco SMA typu I má velmi závažný průběh, který je ortopedickou léčbou jen velmi obtížně ovlivnitelný, pacienti se SMA dospělého typu IV bývají mnohem méně postiženi a konzervativní terapie často postačuje ke zlepšení kvality života [27]. Největší pozornost pohybovému aparátu je tudíž nutné věnovat podskupinám SMA typu II a IIIa, protože adekvátní a včasná léčba vč. provedení preventivních chirurgických zákroků může významně zpomalit progresi onemocnění a zlepšit kvalitu života. Charakteristické příznaky SMA (zejména typu II a IIIa) zahrnují kontraktury především na dolních končetinách (s kyčelními subluxacemi a dislokacemi). Loketní klouby jsou převážně postiženy ohybovými kontrakturami a omezenou supinací následovanou kontrakturami ramen a zápěstí. Na dolních končetinách jsou časté výrazné flekční kontraktury kyčelního a kolenního kloubu a silně omezená pohyblivost kotníku. Indikace pro chirurgickou léčbu jsou na horních končetinách vzácné, oproti tomu chirurgická léčba kontraktur dolních končetin mívá velmi dobrý efekt. Kontinuální fyzioterapie a pracovní terapie jsou nezbytné pro zachování zbývajících schopností v každodenním životě a mohou pomoci snížit progresi kontraktur a optimalizovat zbytkový rozsah pohybu [26,28]. U SMA pacientů jsou rovněž pozorovány hypermobilní klouby postihující nejčastěji zápěstí [29]. Skolióza se objevuje u téměř 100 % pacientů se SMA v pozdějším stadiu onemocnění a zůstává jedním z hlavních problémů ortopedické terapie. Mezi následky skoliózy patří deformity hrudního koše, vzájemný útlak žeber či ovlivnění sklonu pánve. Důsledkem respiračních problémů je masivní snížení vitální kapacity. Zejména v rámci nemocniční péče je nutné mít na paměti omezenou dechovou kapacitu, problémy s anestézií během perioperační péče, problémy s výživou a růstem, ale také potřebu zvláštních rehabilitačních a integračních postupů [27]. Kromě toho existuje vysoké riziko spontánních zlomenin v důsledku osteopenie.

Na rozdíl od dětských pacientů nejsou u dospělých používány ně­kte­ré škály a kritéria specifické pro novorozence. Vzhledem k rozmanitosti závažnosti fenotypického projevu u dospělých pacientů se SMA není možné uplatnit jednu škálu u všech pacientů, ale je vždy nutné specifikovat jejich užití individuálně dle typu SMA a věku pacienta. Vzhledem k predominantnímu postižení na dolních končetinách zůstává zachována motorická funkce primárně na horních končetinách. U dospělých pacientů se SMA všech typů proto provádíme klinimetrické vyšetření motorické funkce ramene, lokte, zápěstí i ruky pomocí škál RULM (Revised Upper Limb Module) [30] a dále vyšetření respiračních funkcí. U pacientů se SMA typu III a IV se dále provádí škála HFMSE (Hammersmith Functional Motor Scale Expanded) nebo RHS (Revised Hammersmith Scale for SMA) [31] hodnotící motorické tělesné funkce a 6MWT (test 6minutové chůze) u pacientů se zachovanou schopností chůze. Klinimetrické hodnocení je tedy důležité pro hodnocení efektu léčby a také k posouzení kvality multidisciplinární péče a mělo by být u dospělých pacientů prováděno v rámci péče v neuromuskulárních centrech spolu s organizací multidisciplinární péče podle SoC.

Grantová podpora

Ministerstvo školství, mládeže a tělovýchovy České republiky (SVMUNI/A/1325/2019). Ministerstvo zdravotnictví České republiky (MH CZ – DRO, FNBr, 65269705).

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.

MUDr. Magda Horáková

Neurologická klinika

LF MU a FN Brno

Jihlavská 20

625 00 Brno

e-mail: magda.horakova@mail.muni.cz


Sources

1. Verhaart IE, Robertson A, Wilson IJ et al. Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy – a literature review. Orphanet J Rare Dis 2017; 12(1): 124. doi: 10.1186/ s13023-017-0671-8.

2. Strenkova J, Vohanka S, Haberlova J et al. REaDY – Czech Registry of Muscular Dystrophies. Cesk Slov Neurol N 2014; 77/ 110(2): 230–234.

3. Mercuri E, Mazzone E, Finkel R et al. Dia­gnosis and management of spinal muscular atrophy: Part 1: Recommendations for dia­gnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28(2): 103–115. doi: 10.1016/ j.nmd.2017.11.005.

4. Finkel RS, Mercuri E, Meyer OH et al. Dia­gnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018; 28(3): 197–207. doi: 10.1016/ j.nmd.2017.11.004.

5. Talbot K, Tizzano EF. The clinical landscape for SMA in a new therapeutic era. Gene Ther 2017; 24(9): 529–533. doi: 10.1038/ gt.2017.52.

6. Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol 2012; 11(5): 443–452. doi: 10.1016/ S1474-4422(12)70061-3.

7. Wirth B, Brichta L, Schrank B et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006; 119(4): 422–428. doi: 10.1007/ s00439-006-0156-7.

8. Munsat TL, Davies KE. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord 1992; 2(5–6): 423–428. doi: 10.1016/ s0960-8966(06)80015-5.

9. Piepers S, van den Berg LH, Brugman F et al. A natural history study of late onset spinal muscular atrophy types 3b and 4. J Neurol 2008; 255(9): 1400–1404. doi: 10.1007/ s00415-008-0929-0.

10. Farrar MA, Vucic S, Johnston HM et al. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 2013; 162(1): 155–159. doi: 10.1016/ j.jpeds.2012.05.067.

11. Park HB, Lee SM, Lee JS et al. Survival analysis of spinal muscular atrophy type I. Korean J Pediatr 2010; 53(11): 965–970. doi: 10.3345/ kjp.2010.53.11.965.

12. Zerres K, Rudnik-Schöneborn S, Forrest E et al. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 1997; 146(1): 67–72. doi: 10.1016/ s0022-510x(96)00284-5.

13. Juntas Morales R, Pageot N, Taieb G et al. Adult-onset spinal muscular atrophy: an update. Rev Neurol (Paris) 2017; 173(5): 308–319. doi: 10.1016/ j.neurol.2017.03.015.

14. Finsterer J. Bulbar and spinal muscular atrophy (Kennedy’s disease): a review. Eur J Neurol 2009; 16(5): 556–561. doi: 10.1111/ j.1468-1331.2009.02591.x.

15. Penttilä S, Jokela M, Bouquin H et al. Late onset spinal motor neuronopathy is caused by mutation in CHCHD10. Ann Neurol 2015; 77(1): 163–172. doi: 10.1002/ ana.24319.

16. Nishimura AL, Mitne-Neto M, Silva HC et al. A mutation in the vesicle-trafficking protein VAPB causes late--onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75(5): 822–831. doi: 10.1086/ 425287.

17. Kosac V, de Freitas MR, Prado FM et al. Familial adult spinal muscular atrophy associated with the VAPB gene: report of 42 cases in Brazil. Arq Neuropsiquiatr 2013; 71(10): 788–790. doi: 10.1590/ 0004-282X20130123.

18. Rossor AM, Oates EC, Salter HK et al. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain J Neurol 2015; 138(Pt 2): 293–310. doi: 10.1093/ brain/ awu356.

19. Neveling K, Martinez-Carrera LA, Hölker I et al. Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 2013; 92(6): 946–954. doi: 10.1016/ j.ajhg.2013.04.011.

20. Iwahara N, Hisahara S, Hayashi T et al. A novel lamin A/ C gene mutation causing spinal muscular atrophy phenotype with cardiac involvement: report of one case. BMC Neurol 2015; 15: 13. doi: 10.1186/ s12883-015-0269-5.

21. Rudnik-Schöneborn S, Botzenhart E, Eggermann T et al. Mutations of the LMNA gene can mimic autosomal dominant proximal spinal muscular atrophy. Neurogenetics 2007; 8(2): 137–142. doi: 10.1007/ s10048-006-0070-0.

22. Devic P, Petiot P. [Distal hereditary motor neuro­pathy]. Rev Neurol (Paris) 2011; 167(11): 781–790. doi: 10.1016/ j.neurol.2011.03.003.

23. Mazanec R, Potočková V, Laššuthová P et al. Hereditární motorické neuropatie. Neurol praxi 2016; 17(6): 354–358. doi: 10.36290/ neu.2016.074.

24. Ikeda K, Iwasaki Y. Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology 2010; 74(23): 1926. doi: 10.1212/ WNL.0b013e3181e03ac0.

25. Liewluck T, Saperstein DS. Progressive Muscular Atrophy. Neurol Clin 2015; 33(4): 761–773. doi: 10.1016/ j.ncl.2015.07.005.

26. Fujak A, Kopschina C, Gras F et al. Contractures of the upper extremities in spinal muscular atrophy type II. Descriptive clinical study with retrospective data collection. Ortop Traumatol Rehabil 2010; 12(5): 410–419.

27. Haaker G, Fujak A. Proximal spinal muscular atrophy: current orthopedic perspective. Appl Clin Genet 2013; 6(11): 113–120. doi: 10.2147/ TACG.S53615.

28. Willig TN, Bach JR, Rouffet MJ et al. Correlation of flexion contractures with upper extremity function and pain for spinal muscular atrophy and congenital myopathy patients. Am J Phys Med Rehabil 1995; 74(1): 33–38. doi: 10.1097/ 00002060-199501000-00006.

29. de Groot IJM, de Witte LP. Physical complaints in ageing persons with spinal muscular atrophy. J Rehabil Med 2005; 37(4): 258–262. doi: 10.1080/ 16501970510030156.

30. Mazzone E, Mayhew A, Montes J et al. Revised upper limb module for spinal muscular atrophy: Development of a new module: RULM in SMA. Muscle Nerve 2016; 55(6). doi: 10.1002/ mus.25430.

31. Ramsey D, Scoto M, Mayhew A et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLoS ONE 2017; 12(2): e0172346. doi: 10.1371/ journal.pone.0172346.

Labels
Paediatric neurology Neurosurgery Neurology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#