Precision medicine in hemato-oncology – treatment of refractory multiple myeloma with massive extramedullary involvement using BRAF/ MEK inhibitors
Authors:
M. Štork 1; J.- Kotašková 1 3; E. Ondroušková 1; M. Borský 1; A. Marečková 1; N. Sendlerová 1; J. Mayerová 1; M. Brada 4; I. Boichuk 1; K. Menšíková 1; Z. Adam 1; M. Krejčí 1; V. Sandecká 1; Z. Jelínková 5; M. Krtička 6; V. Nekuda 6; M. Bilčíková 1; V. Hrabčáková 1; L. Vojtková 1; M.- Jarošová 1 3; P. Šlampa 4; L. Pour 1
Authors‘ workplace:
Interní hematologická a onkologická klinika LF MU a FN Brno
1; Středoevropský technologický institut, MU Brno
2; Ústav lékařské genetiky a genomiky, FN Brno
3; Klinika radiační onkologie LF MU a MOÚ Brno
4; Klinika popálenin a plastické chirurgie LF MU a FN Brno
5; Klinika úrazové chirurgie LF MU a FN Brno
6
Published in:
Klin Onkol 2025; 38(5): 390-397
Category:
Case Reports
doi:
https://doi.org/10.48095/ccko2025390
Overview
Background: Multiple myeloma (MM) with extramedullary disease (EMD) represents a subgroup with particularly poor prognosis. The application of precision medicine principles, especially targeted therapy based on the tumor’s molecular profile, is a potentially effective treatment strategy. Case: We present a case of a patient with relapsed/refractory MM and extensive EMD in whom a BRAFV600E mutation was identified using next-generation sequencing. Based on these results, combined treatment with BRAF (enkorafenib) and MEK (binimetinib) inhibitors was initiated, resulting in early regression of tumor lesions and a biochemical response. The therapy was well tolerated despite the patient’s advanced disease and comorbidities. After several months, a new plasmacytoma lesion developed that no longer responded to treatment. Results: Molecular analysis of the resistant lesion revealed biallelic inactivation of the TP53 tumor suppressor gene, which was not present in the original lesions. This alteration likely represents a mechanism of acquired resistance. The dynamics of the BRAFV600E mutation were also monitored in plasma using cfDNA and digital PCR. Conclusion: This case illustrates the potential of precision therapy in the treatment of MM with BRAFV600E mutation. Panel sequencing and minimally invasive approaches to diagnosis and disease monitoring can significantly contribute to personalized care and a better understanding of disease dynamics.
Keywords:
precision medicine – Multiple myeloma – Next-generation sequencing – BRAF inhibitors
Sources
1. Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97 (8): 1086–1107. doi: 10.1002/ajh.26590.
2. Pour L, Sevcikova S, Greslikova H et al. Soft-tissue extramedullary multiple myeloma prognosis is significantly worse in comparison to bone-related extramedullary relapse. Haematologica 2014; 99 (2): 360–364. doi: 10.3324/haematol.2013.094409.
3. Moreau P, Mateos MV, Goldschmidt H et al. Outcomes of patients with extramedullary disease in triple-class exposed relapsed/refractory multiple myeloma from the Pooled LocoMMotion and MoMMent studies. Clin Lymphoma Myeloma Leuk 2025; 25 (9): 646–655.e1. doi: 10.1016/j.clml.2025.03.014.
4. D‘Agostino M, Cairns DA, Lahuerta JJ et al. Second revision of the International Staging System (R2-ISS) for overall survival in multiple myeloma: a European Myeloma Network (EMN) report within the HARMONY project. J Clin Oncol 2022; 40 (29): 3406–3418. doi: 10.1200/JCO.21.02614.
5. Li S, Fu J, Yang J et al. Targeting the GCK pathway: a novel and selective therapeutic strategy against RAS-mutated multiple myeloma. Blood 2021; 137 (13): 1754–1764. doi: 10.1182/blood.2020006334.
6. Lavacchi D, Roviello G, D‘Angelo A. Tumor-agnostic treatment for cancer: when how is better than where. Clin Drug Investig 2020; 40 (6): 519–527. doi: 10.1007/s40261-020-00915-5.
7. Navrkalova V, Plevova K, Hynst J et al. LYmphoid NeXt-Generation Sequencing (LYNX) panel: a comprehensive capture-based sequencing tool for the analysis of prognostic and predictive markers in lymphoid malignancies. J Mol Diagn 2021; 23 (8): 959–974. doi: 10.1016/j.jmoldx.2021.05.007.
8. Giesen N, Chatterjee M, Scheid C et al. A phase 2 clinical trial of combined BRAF/MEK inhibition for BRAFV600E-mutated multiple myeloma. Blood 2023; 141 (14): 1685–1690. doi: 10.1182/blood.2022017789.
9. Raab MS, Lehners N, Xu J et al. Spatially divergent clonal evolution in multiple myeloma: overcoming resistance to BRAF inhibition. Blood 2016; 127 (17): 2155–2157. doi: 10.1182/blood-2015-12-686782.
10. Gouda MA, Subbiah V. Precision oncology for BRAF--mutant cancers with BRAF and MEK inhibitors: from melanoma to tissue-agnostic therapy. ESMO Open 2023; 8 (2): 100788. doi: 10.1016/j.esmoop.2023.100788.
11. Annunziata CM, Hernandez L, Davis RE et al. A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood 2011; 117 (8): 2396–2404. doi: 10.1182/blood-2010-04-278788.
12. Raje N, Chau I, Hyman DM et al. Vemurafenib in patients with relapsed refractory multiple myeloma harboring BRAFV600 mutations: a cohort of the histology-independent VE-BASKET study. JCO Precis Oncol 2018; 2: PO.18.00070. doi: 10.1200/PO.18.00070.
13. Schjesvold F, Paiva B, Ribrag V et al. Cobimetinib alone and plus venetoclax with/without atezolizumab in patients with relapsed/refractory multiple myeloma. Clin Lymphoma Myeloma Leuk 2023; 23 (1): e59–e70. doi: 10.1016/j.clml.2022.10.006.
14. Johnson DB, Menzies AM, Zimmer L et al. Acquired BRAF inhibitor resistance: a multicenter meta--analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer 2015; 51 (18): 2792–2799. doi: 10.1016/j.ejca.2015.08.022.
15. Mack EKM, Hartmann S, Ross P et al. Monitoring multiple myeloma in the peripheral blood based on cell-free DNA and circulating plasma cells. Ann Hematol 2022; 101 (4): 811–824. doi: 10.1007/s00277-022-04771-5.
16. Rasche L, Schinke C, Maura F et al. The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states. Nat Commun 2022; 13 (1): 4517. doi: 10.1038/s41467-022-32145-y.
17. Maura F, Rajanna AR, Ziccheddu B et al. Genomic classification and individualized prognosis in multiple myeloma. J Clin Oncol 2024; 42 (11): 1229–1240. doi: 10.1200/JCO.23.01277.
18. Pawlyn C, Loehr A, Ashby C et al. Loss of heterozygosity as a marker of homologous repair deficiency in multiple myeloma: a role for PARP inhibition? Leukemia 2018; 32 (7): 1561–1566. doi: 10.1038/s41375-018-0017-0.
19. Facon T, Dimopoulos MA, Leleu XP et al. Isatuximab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 2024; 391 (17): 1597–1609. doi: 10.1056/NEJMoa2400712.
20. Moreau P, Garfall AL, van de Donk NWCJ et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 2022; 387 (6): 495–505. doi: 10.1056/ NEJMoa2203478.
21. Avet-Loiseau H, Davies FE, Samur MK et al. International Myeloma Society/International Myeloma Working Group consensus recommendations on the definition of high-risk multiple myeloma. J Clin Oncol 2025; 43 (24): 2739–2751. doi: 10.1200/JCO-24-01893.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2025 Issue 5
Most read in this issue
- Nutrition of patients undergoing haematopoietic stem cell transplantation
- Aktuality z Národního ústavu pro výzkum rakoviny
- Cancer patients admitted to intensive care unit – a six-year retrospective analysis
- Changes in the approach to the analysis and evaluation of inherited pathogenic TP53 variants