#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Angiogenesis as Part of the Tumor „Ecosystem“ and Possibilities to Influence It


Authors: P. Klener
Authors‘ workplace: 1. interní hemato‑ onkologická klinika 1. LF a VFN a ÚHKT, Praha
Published in: Klin Onkol 2010; 23(1): 14-20
Category: Reviews

Overview

Angiogenesis is a complex process which is critical for the growth, invasion and metastasis ­of tumors. In the past ten years numerous new agents have been developed as angiogenesis inhibitors. In the review, angiogenesis inhibitors are classified by their targeted area of the angiogenic process. The role of VEGF and its receptors is described in detail, but other antiangiogenic strategies such as inhibition of endothelial proliferation, inhibition of matrix metalloproteinases and use of vascular disrupting agents are also reviewed.

Key words:
vasculogenesis –  angiogenesis –  lymphangiogenesis –  angiogenesis inhibitors –  strategy of antiangiogenic therapy


Sources

1. Witz IP. The tumor microenvironment: the making of paradigm. Cancer Microenviron 2009 (Suppl 1) 9– 17.

2. Goldie LC, Nix MK, Hirschi KK. Embryonic vasculogenesis and hematopoietic specification. Organogenesis 2008, 4: 257– 263.

3. Kerbel RS. Tumor angiogenesis. New Engl J Med 2008; 358: 2039– 2049.

4. Folkman J. Tumour angiogenesis: therapeutic implications. New Engl J Med 1971; 285: 1182– 1188.

5. Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol 2009; 19: Epub ahead of print.

6. Naňka O, Grim M. Utváření cévního řečiště: přehled molekulárních mechanismů a možnosti terapeutického ovlivnění. Čas Lék Čes 2009; 148: 158– 163.

7. Klener P. Význam inhibice angiogeneze v protinádorové léčbě. Remedia 2005; 15: 384– 389.

8. Folberg R, Hendrix MU, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000; 156: 361– 381.

9. Monzani E, La Porta CA. Targeting cancer stem cells to modulate aalternative vascularization mechanisms. Srem Cell Rev 2008; 4: 51– 56.

10. Shinkaruk B, Bayle M, Lain G et al. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anticancer Agents 2003; 2: 95– 117.

11. Favier B, Alam A, Barron P et al. Neuropilin‑2 interacts with VEGFR‑ 2 and VEGFR‑ 3 promotes human endothelial cell survival and migration. Blood 2006; 108: 1243– 1250.

12. Morisada T, Oike Y, Yamada Y et al. Angiopoetin‑1 promotes LYVE‑ 1- positive lymphatic vessel formation. Blood 2005; 105: 4649– 4656.

13. Scharpfenecker M, Fiedler U, Reiss Y et al. The Tie‑ 2 ligand angiopoetin‑2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Science 2005; 118: 771– 780.

14. Zumsteg A, Gerhard C. Corrupt policeman: inflamatory cells promote tumor angiogenesis. Curr Opin Oncol 2009; 21: 60– 70.

15. Christensen J, Anderes K. Beyond VEGF: Targeting tumor growth and angiogenesis via alternative mechanisms. Adv Exp Med Biol 2008; 610: 43– 53.

16. Bornstein P. Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 2009; Epub ahead of print.

17. Hosaka T, Kimura H, Heishi T et al. Vasohibin‑1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am J Pathol 2009; 175: 430– 439.

18. Watanabe K, Hasegavwa Y, Yamashito H et al. Vasohibin as an endothelium‑ derived negative feedback regulator of angiogenesis. J Clin Invest 2004; 114: 898– 907.

19. Kern J, Steurer M, Gasti G et al. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo. BMC Cancer 2009; 9: 284– 287.

20. Rusk A, McKeegan E, Haviv F et al. Preclinical evaluation of antiangiogenic thrombospondin‑1 peptide mimetics, ABT‑ 526 and ABT‑ 510, in companion dog with naturally occuring cancers. Clin Cancer Res 2006; 12: 7444– 7455.

21. Klener P. Nové možnosti využití bevacizumabu v protinádorové léčbě. Remedia 2008; 18: 57– 62.

22. Chu QS. Aflibercept (AVE 0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors. Expert Opin Biol Ther 2009; 9: 263– 271.

23. Fujita Y, Abe R, Shimizu H. Clinical approaches toward tumor angiogenesis: past, present and future. Curr Pharm Des 2008; 14: 3820– 3834.

24. Mita AC, Wang D, Takimoto CH et al. AMG 386, a selective angiopoetin 1/ 2 neutralizing peptibody, in combination with chemotherapy in adult patients with advanced solid tumors. J Clin Oncol 2007; 25: 14033.

25. Benny O, Fainaru O, Adini A et al. An orally small‑molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol 2008; 7: 799– 807.

26. Jimenéz‑ Hernández E, Dueňas‑ González MT, Quintero‑Curiel JL et al. Treatment with interferon‑alpha‑ 2b in children with life‑ threatening hemangiomas. Dermatol Surg 2008; 34: 640– 647.

27. Dredge K, Marriott JB, Macdonald CD et al. Novel thalidomide analogues display anti‑angiogenic activity independently of immunomodulatory effects. Br J Cancer 2002; 87: 1166– 1172.

28. Rýdlová M, Holubec L jr, Ludvíková M jr et al. Biological activity and clinical implications of matrix metalloproteinases. Anticancer Res 2008; 28: 1389– 1397.

29. Gridelli CM, Rossi A, Maione P et al. Vascular disrupting agents: a novel mechanism of action in the battle against non‑small cell lung cancer. Oncologist 2009; 14: 612– 620.

30. Hinnen P, Eskens FA. Vascular disrupting agents in clinical development. Br J Cancer 2007; 96: 1159– 1165.

31. McKeage MJ, Reck M, Jameson MB et al. Phase II study of ASA404 (vadimezan, 5,6- dimethylxanthenone‑ 4- acetic‑ acid/ DMXAA) 1800 mg/ m2 combined with carboplatin and paclitaxel in previously untreated advanced non‑small cell lung cancer. Lung Cancer 2009; 65: 192– 197.

32. Cai W, Chen X. Anti angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 2006; 5: 407– 428.

33. Zeitlin BD, Zeitlin IJ, Nor JE. Expanding circle of inhibition: small‑molecule inhibitors of Bcl‑ 2 as anticancer and antiangiogenic agents. J Clin Oncol 2008; 26: 4180– 4188.

34. Scharovsky OG, Mainetti LE, Rozados VR. Metronomic chemotherapy: changing the paradigm that more is better. Curr Oncol 2009; 16: 7– 15.

35. Bertolini F, Paul S, Manusco P et al. Maximum tolerable dose and low‑dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 2003; 63: 4342– 4346.

36. Kerbel RS. Improving conventional or low dose metronomic chemotherapy with targeted antiangiogenic drugs. Cancer Treat Rep 2007; 39: 150– 159.

37. Sarmiento R, Gasparini G. Antiangiogenic metronomic chemotherapy. Onkologie 2008; 31: 161– 162

38. Plate KH. From angiogenesis to lymphangiogenesis. Nature Med 2001; 7: 151– 152.

39. Karpanen T, Alitalo K. Molecular bio­logy and pathology of lymphangiogenesis. Ann Rev Pathol 2008; 4: 367– 397.

40. Humprecht V, Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med 2009; 13: 1405– 1416.

41. Pilka R, Dzvinčuk P, Kudela M. Lymfangiogeneze a nové markery lymfatického endotelu. Čes Gynek 2003; 68: 427– 431.

42. Griffioen AW. Lymhangiogenesis factors: a target for therapy? Blood 2009; 113: 4135– 4136.

43. Thiele W, Sleeman JP. Tumor‑induced lymfangiogenesis : a target for cancer rherapy? J Biotechnol 2006; 124: 224– 241.

44. Herbst RS, Hong D, Chap L et al. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor in adult patients with advanced solid tumors. J Clin Oncol 2009; 27: 3557– 3565.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#