#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mild Hyperhomocysteinemias From Deficiency of MTHFR (C677T and C1298A) in Adults and Adolescents Attending Metabolic Unit: Is There Any Necessity for Their Differentiation and Treatment?


Authors: J. Hyánek;  V. Maťoška;  L. Dubská;  B. Míková;  H. Pejznochová;  J. Dvořáková;  L. Táborský;  L. Košan;  V. Martiníková;  J. Privarová;  J. Brtnová
Authors‘ workplace: Metabolická ambulance, OKBHI a Lékárna Nemocnice na Homolce, Praha
Published in: Klin. Biochem. Metab., 25, 2017, No. 1, p. 18-26

Overview

Goal:
incidence and monitoring of mild hypeorhomocysteinemias in patients with cardiovascular risk attending the metabolic unit.

Type of Study:
retrospective analysis of a metabolic study.

Patients and Methods:
44 patients – from metabolic unit- selected homozygotes or heterozygotes confirmed by molecular-genetics methods for polymorphism of methylenetetrahydrofolate reductases (MTHFR C677T and A1298C) and accompanied with mild hyperhomocysteinemia (> 30 µmol/l of homocysteine in blood) were further metabolically analyzed and documented.

Results:
authors discuss and postulate till now not described form of mild hyperhomocysteinemia caused only by decreased enzymatic activity of MTHFR as a relatively often metabolic disturbance of folate metabolism. Due to defficient enzyme aktivity of MTHFR C677T in TT homozygotes (< 40%) the levels of plasmatic folates are decreased and the remethylation of homocysteine in the methionine cyclus is diminished.The negative correlation of lowered plasmatic folate with hyperhomocysteinemia in TT homozygotes (r= -0.853) and in CT heterozygotes (r = -0.635) was proved. In healthy control (r = +0.259). Supplementation of these patients with folic acid effectively increased folate plasmatic levels and decreased homocysteine levels. Typical clinical cases are documented with metabolic schemes or pedigrees. The therapeutical effect of homocysteine decrease on prognosis of cardiovascular risk has not been till now observed.

Conclusion:
mild hyperhomocysteinemias from folate defficiency due to homozygozity or heterozygozity of MTHFR in the Czech population represent the 3rd most cause of hyperhomocysteinemias: 1st kidney diseases, 2nd deficiency of holotranscobalamin. All mild hyperhomocysteinemias detected within routine laboratory practice must be differenciated and with adequate therapeutical effort established. Otherwise the routine estimation of homocysteine could be missused only for economical purposes.

Key words:
Hyperhomocysteinemia, Methylenetetrahydrofolate Reductase, MTHFR, Plasma Folate Cardiovascular Risk, Spina Bifida.


Sources

1. The homocysteine studies collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA, 2002, 288, 2015-22. (Editorial).

2. The Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and B vitamins in vascular diseases. NEJM, 2006, 354, 1567-77.

3. Homocysteine and coronary vascular risk: considering the evidence in the context of study design, folate fortification and statistical power. Clin. Chem., 2007, 53, 807-9 (Editorial).

4. Bonaa, K. H., Njolstad, I., Ueland, P. M. et al.: Homocysteine lowering and cardiovascular events after acute myocardial infarcts. NEJM., 2006, 354, 1578-88.

5. Blom, H, J.: Overview of homocysteine and folate metabolism with special reference to cardiovascular disea-ses and neural tube defects. J. Inher. Metab. Dis., 2011, 34, 75-81.

6. Bostom, A. G., Selhub, J. Homocysteine and atherosclerosis: subclinical and clinical disease associations. Circulation, 1999, 89, 2361-3.

7. Bostom, A. G. Homocysteine:expensive creatinine or important modifiable risk factor for arteriosclererotic outcomes in renal transplant recipients? Editorial. J. Am. Soc. Nephrol. 2000, 11, 149-151.

8. Brattstrom, L. B., Wilcken, D. E.: Homocysteine and cardiovascular disease:cause of effect? Amer. J. Clin. Nutr., 2000, 72, 315-323.

9. Carmel, R., Jacobsen, D. W.: Homocysteine in health and disease. Cambridge Univ. Press, 2001.

10. Castro, R., Rivera, L. Blom, H. J. et al.: Homocysteine metabolism, hyperhomocysteinemia and vascular disease: an review . J. Inher. Metab. Dis., 2006, 28, 3, 20.

11. Clarke, R., Armitage, J., Lewington S. et al.: On behalf of B-Vitamin treatment trialist collaboration. Homocysteine-lowering trials for prevention of cardiovascular events: a review of the design and power of the large randomized trials . Am. Heart J., 2006, 151. 282-7

12. Cronin, S., Furie, K. L., Kelly, P. J. et al.: Dose-related association of MTHFR 677T allele with risk of ischemic stroke:evidence from a cummulative meta-analysis. Stroke, 2005, 36, 1581-87.

13. Davis, S. R., Quinlivan, E-P-. Shelnutt, K. P. et al.: Homocysteine synthesis is elevated but total remethylation is unchanged by the methylentetrahydrofolate reductase 677C>T polymorphism and by dietary folate restriction in young women. J. Nutr., 2005, 135, 1045-50.

14. Delaughery, G. m Evans, A., Sageshi, A. et al.: Common station in methyleneterahydrofolate reductase. Circulation. 1996, 94, 3076-78.

15. Doshi, S. N., McDowell, I. F., Moat, S. J. et al.: Folic acid improves endothelial function in coronary artery diseases via mechanisms largely independent of homocysteine lowering. Circulation, 2002, 105;22-26.

16. Dvořáková, J., Kolínová, M., Hyánek, J. et al.: Hyperhomocysteinemie u nemocných léčených antiepileptiky- první zkušenosti. Klin. Biochem. Metab., 2000, 8, 190-194.

17. Elshorbagy, A. K., Oulhaj, A., Konstatinova, S. et al.: Plasma creatinine as a determinant of plasma total homocysteine concentrations in the Hordaland Homocysteine Study;Use of statistical modeling to determine reference limits. Clin. Biochemistry, 2007, 40, 1209-1218.

18. Fredericksen, J., Jul, K. Grande, P. et al.: Methy-lenetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood, 2004, 104, 3046-3051.

19. Frosst P., Blom, H. J., Milos, R. et al.: A candidate genetic risk factor for vascular disease: a common mutation in MTHFR. Nature Genetics, 1995, 10, 111-113.

20. Guenther, B. D., Shepphard, C. A., Tran, P. et al.: The structure and properties of methyleneterahydrofolate reductase from Escherichia coli suggest how folate ame-liorates human hyperhomocysteinemia. Nature Structural Biology, 1999, 6, 359-366.

21. Guttormsen, A. B., Ueland, P. N., Nesthus, I. et al.: Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> 40 µmol/l). J. Clin. Invest., 1996, 98, 2174-83.

22. Hladovec, J.: Experimental homocysteinemia: endothelial lesions and thrombosis. Blood Vessels, 1979, 16, 202-205.

23. Hubacek, J. A.: Association of MTHFR genetic variants C677T and A1298C on predisposition to spontaneous abortion in Slavonic population. Clin. Chim. Acta, 2015, 44O, 104-107.

24. Hyánek, J., Pejznochová, H., Dvořáková, J.: Naše zkušenosti s diferencováním mírných hyperhomocysteinemií. Klin. Biochem. Metab., 2000, 8, 58-63.

25. Kluijtmans L. A. J., Kastelein, J. J. P, . Lindemans, J. et al.: Molecular genetic analysis in mild hyperhomocysteinemia:a common mutation in the MTHFR gene is genetic risk factor for cardiovascular disease. Am. J. Hum. Genet., 1996, 58, 35-41.

26. Kožich, V., Kraus, J, De Franchi, R. et al.: Hyperhomocysteinemia in premature arterial disease:examination of CBS alleles at the molecular level. Human. Mol. Genet. 1995, 623-629.

27. Kožich, V., Kraus, J., Hyánek, J.: Homocystein, geny a vitaminy: souvislost s kardiovaskulárním onemocněními a komplikacemi v těhotenství. DMEV, 1999, 3, 113-120.

28. Pullin, Ch., Ashfield, J. et al.: Optimalization of dietary folate or low dose folic acid supplements lower homocysteine but do not enhance edothel function in healthy adults, irrespective of the MTHFR genotype. J. Amer. Coll. Cardiol., 2001, 38, 1799-1805.

29. Liem, A., Reynierse-Buitenwwert, G. . H., Aeilko, H., et al.: Secondary Prevention with folic acid: effects on clinical outcomes., J. Amer. CollCard. 2003, 41, 2150-13.

30. Loscalzo, J.: Homocysteine trends-clear outcomes for complex reasons. NEJM, 2006, 354, 1629-32.

31. Malinow, M. R. Homocysteine and arterial occlusive diseases. J. Int. Med., 1994, 236, 603-609.

32. Milman, N.: Intestinal absorption of folic acid – new physiologic and molecular aspects. Indian. J. Med. Res., 2012:136, 725-728.

33. Ou, T., Yamakaw-Kobayashi, K., Arinami, T. et al.: Methylenetetrahydrofolate reductase and apolipoprotein E polymorphism are independent risk factors for coronary heart disease in Japanese: a case control study. Atherosclerosis, 1998, 18, 1465-9.

34. Refsum, H., Smith, A. D., Ueland, P. M. et al.: Facts and reccommendations about total homocysteine determinations:An expert opinion. Clin. Chem., 2004, 50, 3-32

35. Sanjoaquin, M., A., Allen, N., Conto, E. et. al.: Folate intake and colorectal carcinom risk: a meta-analytical approach. Int. J. Canc., 2005, 113, 825-28.

36. Schiff, M., Benoist, J. F., Tilea, B. et al.: Isolated remethylation disorders:do our treatments benefit patiens? J. Inher. Metabol. Dis., 2011, 34, 137-145.

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#