#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

HDL: function, dysfunction and laboratory methods of determination


Authors: D. Novotný 1;  D. Karásek 2;  H. Vaverková 2;  P. Malina 3
Authors‘ workplace: Oddělení klinické biochemie, Fakultní nemocnice Olomouc 1;  III. Interní klinika lékařské fakulty Univerzity Palackého a Fakultní nemocnice Olomouc 2;  Oddělení klinické biochemie, Nemocnice Písek 3
Published in: Klin. Biochem. Metab., 21 (42), 2013, No. 3, p. 122-128

Overview

Objective:
On the basis of recent studies to make an overview concerning the crucial biological functions of high density lipoproteins (HDL), with emphasis on the role in reverse cholesterol transport and their antiinflammatory traits. The aim was to describe probable mechanisms of dysfunctional proinflammatory HDL formation with introduction some of associated parameters. To present laboratory methods for determination of quantitative, structural and functional qualities of HDL, including advanced mass spectrometry techniques.

Study design:
review

Conclusion:
In the case of systemic inflammation and/or oxidative stress, the formation of dysfunctional HDL accumulating oxidants takes place, including apo AI structural modifications. This process can lead to the inhibition of reverse cholesterol transport and proinflammatory HDL generation, among others. Loss of beneficial qualities results from modification of both lipid and protein components of HDL. In some cases, an isolated quantitative measurement of HDL cholesterol may not fully correlate with cardiovascular risk and it is eligible to determine some of structural and/or functional markers of HDL.

Key words:
HDL, dysfunctional HDL, reverse cholesterol transport, inflammation, paraoxonase 1.


Sources

1. Gordon, T., Castelli, W. P, Hiortland , M. C., et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med., 1977, 62, p. 707-714.

2. Heart Protection Study Collaborative Group: MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20.536 high risk individuals: randomised placebo controlled trial. Lancet, 2002, 360, p. 7-22.

3. Ridker, P. M., Danielson, E., Fonseca , F. A. H., et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med., 2008, 359, p. 2195-2207.

4. Navab, M., Ananthramaiah, G.M., Reddy, S.T., et al. The double jeopardy of HDL. Ann. Med., 2005, 37, s.173-178.

5. Von Eckardstein, A., Nofer, J. R., Assmann, G., et al. HDL and arteriosclerosis. Role of cholesterol efflux and reverse transport. Arterioscler. Thromb. Vasc. Biol., 2001, 21, p. 13-27.

6. Movva, R. , Rader, D. J. Laboratory assesment of HDL heterogeneity and function. Clin. Chem., 2008, 54, p. 788-800.

7. Shao, B. , Oda, M. N., Oram, J. F., et al. Myeloperoxidase- an inflamatory enzyme for generating dysfunctio-nal high density lipoprotein. Curr. Opin. Cardiol., 2006, 21, p. 322-328.

8. Navab, M., Reddy, S. T., Van Lenten B. J., et al. The role of dysfunctional HDL in atherosclerosis. J. Lipid. Res., 2009, 50, S145-S149.

9. Dodani, S., Grice, D. G., Joshi, S. Is HDL function as important as HDL quantity in the coronary artery disease risk assessment? J. Clin. Lipidol., 2009, 3, p. 70-77.

10. Nandi, S., Ma, L., Denis, M., et al. ABCA1-mediated cholesterol efflux generates microparticles in addition to HDL trough process governed by membrane rigidity. J. Lipid. Res., 2009, 50, p. 456-466.

11. Kontush, A., Chapman, M. HDL: structure, metabolism, function and therapeutics. John Willey and Sons, Inc., 2012, NJ.,1st edition.

12. Larkin, L., Khachigian, L. M., Jessup, W. Regulation of apolipoprotein E production in macrophages. Inf. J. Mol. Med., 2000, 6, p. 253-258.

13. Navab, M., Reddy, S. T., Van Lenten, B. J., et al. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol., 2011, 8, p. 222-232.

14. Haas, M. J., Mooradian, A. D. Inflammation, high-density lipoprotein and cardiovascular dysfunction. Curr. Opin. Infect. Dis., 2011, 24, p. 265-272.

15. Kleinbongard, P., Heusch, G., Schultz, R. TNF alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol. Ther., 2010, 127, p. 295-314.

16. Wang, Y. F, Yang, X. F., Cheng, B., et al. Protective effect of astragalus polysaccharides on ATP binding cassette transporter A1 in THP-1 derived foam cell exposed to tumor necrosis factor alpha. Phytoter. Res., 2010, 24, p. 393-398.

17. Gergod-Giannone, M. C., Li, Y., Holleboom, A., et al. TNFalpha induces ABCA1 through NK-kappaB in macrophages and in phagocytes ingesting apoptotic cells. Proc. Natl. Acad .Sc. U.S.A., 2006, 103, p. 3112-3117.

18. Tang, C., Liu, Y., Kessler, P. S., et al. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J. Biol. Chem., 2009, 284, p. 32336-32343.

19. Shao, B., Oda, M. N., Bergt, C., et al. Myeloperoxidase impairs ABCA1-dependent Cholesterol Efflux through Methionine Oxidation and Site-specific Tyrosine Chlorination of Apolipoprotein A-I. J. Biolog. Chem., 2006, 281, p. 9001-9004.

20. Zheng, L., Nukuna, B., Brennan, M. L., et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest., 2004, 114, p. 529-541.

21. Otocka-Kmiecik, A., Mikhailidis, D. P., Nicholls, J. S., et al. Dysfunctional HDL: A novel important diagnostic and therapeutic target in cardiovascular disease? Progress in Lipid Res., 2012, 51, p. 314-324.

22. Kontush, A., Chapman, J. Funcionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation and atherosclerosis. Pharmacol. Rev., 2006, 58, p. 342-374.

23. Durrington, P. N. , Mackness, B., Mackness, M. I. Paraoxonase and atherosclerosis. Art. Thromb. Vasc. Biol., 2001, 21, p. 473-480.

24. Aharoni, S., Aviram, M., Fuhrman, B. Paraoxonase 1 (PON1) reduces macrophage inflammatory response. Atherosclerosis, 2013, 228, p. 353-361.

25. James, R. W., Brulhart-Meynet, M. C., Singh, A. K., et al. The scavenger receptor class B, type I is a primary determinant of paraoxonase 1 association with high-density lipoproteins. Arterioscler. Thromb. Vasc. Biol., 2010, 30, p. 2121-2127.

26. Mackness, B., Mackness, M. Anti-inflammatory properties of paraoxonase 1 in atherosclerosis. Adv. Exp. Med. Biol., 2010, 660, p. 143-151.

27. James, R. W., Blatter Garin, M. C., Calabresi, L., et al. Modulated serum activities and concentrations of paraoxonase in high density lipoprotein deficiency states. Atherosclerosis, 1998, 139, p. 77-82.

28. Mackness, B., Durrington, P. N , Abuashia, B., et al. Low paraoxonase activity in type II diabetes complicated by retinopathy. Clin. Sci., 2000, 98, p. 355-363.

29. Bhattacharyya, T., Nicholls, S. J., Topol, E. J., et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA, 2008, 299, p. 1265-1276.

30. Goswami, B. , Tayal, D., Gupta, N., et al. Paraoxo-nase: a multifaceted biomolecule. Clin. Chim. Acta., 2009, 410, p. 1-12.

31. Roman, R. M. , Wendland, A. E., Polanczyk, C. A. Myeloperoxidase and coronary heart disease: from research to clinical practice. Arq. Bras. Cardiol., 2007, 91, p. 11-18.

32. Ouchi, N., Walsh, K. Adiponectin as an anti-inflammatory factor. Clin. Chim. Acta, 2007, 380, p. 24-30.

33. Peake, P. W. , Shen, Y., Walther, A., et al. Adiponectin binds C1q and activates the classical pathway of complement. Biochem. Biophys. Res. Commun., 2008, 367, p. 560-565.

34. Navab, M., Hama, S. Y., Hough, G. P., et al. A cell-free assay for detecting HDL that is dysfunctional in preven-ting the formation of or inactivating oxidized phospholi-pids. J. Lipid. Res., 2001, 42, p. 1308-1317.

35. Ansell, B. J., Fonarow, G. C., Fogelman, A. M. The paradox of dysfunctional high-density lipoprotein. Curr. Opin. Lipidol., 2007, 18, p. 427-434.

36. Navab, M., Hama, S. Y., Hough, G. P., et al. Normal high density lipoprotein inhibits three steps in the formation of midly oxidized low density lipoprotein: steps 2 and 3. J. Lipid. Res., 2000, 41, p. 1495-1508.

37. Nicholls, S. J., Lundman, P., Harmer, J. A., et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol., 2006, 48, p. 715-720.

38. Heinecke, J. W. The HDL proteome: a marker-and perhaps mediator-of coronary artery disease. J. Lipid. Res., 2009, 50, S167-S171.

39. Vaisar, T., Pennathur, S., Green, P. S., et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest., 2007, 117, p. 746-756.

40. Vaisar, T., Mayer, P., Nilsson, E., et al. HDL in humans with cardiovascular disease exhibits a proteomic signature. Clin. Chim. Acta., 2010, 411, p. 972-979.

41. Shah, A. S., Tan, L., Lu Long, J., et al. The proteomic diversity of high density lipoproteins: Our emerging understanding of its importance in lipid transport and beyond. J. Lipid. Res., 2013, doi: 10.1194/jlr.R035725.

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#