#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Serum concentrations of calprotectin and cagranulin C in polytrauma patients


Authors: E. Bartáková 1;  P. Novotný 2;  M. Blahutová 3;  M. Holub 1;  T. Tyll 2
Authors‘ workplace: Klinika infekčních nemocí, 1. lékařská fakulta Univerzity Karlovy, Ústřední vojenská nemocnice 1;  Klinika anesteziologie, resuscitace a intenzivní medicíny, 1. lékařská fakulta Univerzity Karlovy, Ústřední vojenská nemocnice 2;  Oddělení klinické biochemie, Ústřední vojenská nemocnice 3
Published in: Anest. intenziv. Med., 29, 2018, č. 4, s. 193-200
Category:

Overview

Objective:

To study the kinetics of calprotectin and calgranulin C in the serum of patients with polytrauma, to evaluate the serum levels of both the proteins as predictors of nosocomial infection (NI), and to compare calprotectin and calgranulin C with routine biomarkers and scoring systems.

Design:

Monocentric, prospective, clinical study

Setting:

University Hospital ICU

Materials and methods:

The study included 25 polytrauma patients and 20 healthy volunteers.   The blood specimens were collected on admission (day 1) and then on days 3, 5 and 7 of hospitalization. Concentrations of calprotectin and calgranulin C were determined by enzyme immunometric assay. Patients were scored with Injury Severity Score, Acute Physiology And Chronic Health Evaluation II a Sequential Organ Failure Assessment Score (SOFA). The white blood cell count and the serum concentrations of the C-reactive protein (CRP), procalcitonin (PCT), glucose and lactate were the measured routine biomarkers. Other parameters included length of ICU stay, duration of mechanical ventilation, antibiotic therapy and development of nosocomial infection.

Results:

Significant elevations of the calprotectin and calgranulin C serum levels in trauma patients in comparison to healthy subjects were observed during the whole study period. Concentrations of both the proteins correlated positively with the SOFA score on days 1 and 3, CRP and PCT on day 3; and calprotectin also correlated with CRP on day 5. A trend of low serum levels of calprotectin a calgranulin C was observed in patients with nosocomial infection (n=10). In addition, these patients had significantly higher glycaemia on days 1, 3 and 5 in comparison to patients without infectious complication (n=8).

Conclusions:

The results suggest calprotectin and calgranulin C serum levels as suitable biomarkers of severe injury.

Keywords

severe injury – calprotectin – calgranulin C – glycaemia – sequential organ failure assessment scores – C-reactive protein – procalcitonin


Sources

1.   Rau CS, Wu SC, Kuo PJ, et al. Polytrauma Defined by the New Berlin Definition: A Validation Test Based on Propensity-Score Matching Approach. Int J Environ Res Public Health. 2017;14. Epub 2017/09/11. doi: 10.3390/ijerph14091045.

2.   Stahel PF, Heyde CE, Wyrwich W, Ertel W. [Current concepts of polytrauma management: from ATLS to “damage control”]. Orthopade. 2005;34:823−836. doi: 10.1007/s00132-005-0842-5. PubMed PMID: 16078059.

3.   Saïd-Sadier N, Ojcius DM. Alarmins, inflammasomes and immunity. Biomed J. 2012;35:437−449. doi: 10.4103/2319-4170.104408.

4.   Chan JK, Roth J, Oppenheim JJ, et al. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122:2711−2719. Epub 2012/08/01. doi: 10.1172/JCI62423.  

5.   Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28−37. Epub 2006/08/30. doi: 10.1189/jlb.0306170.

6.   Santucci CA, Purcell TB, Mejia C. Leukocytosis as a predictor of severe injury in blunt trauma. West J Emerg Med. 2008;9:81−85. 

7.   Gosling P, Dickson GR. Serum c-reactive protein in patients with serious trauma. Injury. 1992;23:483−486. 

8.   Wanner GA, Keel M, Steckholzer U, et al. Relationship between procalcitonin plasma levels and severity of injury, sepsis, organ failure, and mortality in injured patients. Crit Care Med. 2000;28:950−957. 

9.   Wang J, Vodovotz Y, Fan L, et al. Injury-induced MRP8/MRP14 stimulates IP-10/CXCL10 in monocytes/macrophages. FASEB J. 2015;29(1):250-62. Epub 2014/10/23. doi: 10.1096/fj.14-255992. 

10. Joly P, Marshall JC, Tessier PA, et al. S100A8/A9 and sRAGE kinetic after polytrauma; an explorative observational study. Scand J Trauma Resusc Emerg Med. 2017;25:114. Epub 2017/11/25. doi: 10.1186/s13049-017-0455-0.

11. Wittkowski H, Frosch M, Wulffraat N, et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 2008;58:3924−3931. doi: 10.1002/art.24137.

12. Berrocal-Almanza LC, Goyal S, Hussain A, et al. S100A12 is up-regulated in pulmonary tuberculosis and predicts the extent of alveolar infiltration on chest radiography: an observational study. Sci Rep. 2016;6:31798. Epub 2016/08/19. doi: 10.1038/srep31798. 

13. Ingels C, Derese I, Wouters PJ, et al. Soluble RAGE and the RAGE ligands HMGB1 and S100A12 in critical illness: impact of glycemic control with insulin and relation with clinical outcome. Shock. 2015;43:109−116. doi: 10.1097/SHK.0000000000000278.

14. Baker SP, O'Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187−196. 

15. Bouch DC, Thompson JP. Severity scoring systems in the critically ill. Continuing Education in Anaesthesia Critical Care & Pain. 2008;8:181−185. doi: 10.1093/bjaceaccp/mkn033.

16. Butcher NE, Balogh ZJ. The practicality of including the systemic inflammatory response syndrome in the definition of polytrauma: experience of a level one trauma centre. Injury. 2013;44:12−17. Epub 2012/05/17. doi: 10.1016/j.injury.2012.04.019.

17. Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma. 1987;27:370−378.

18. Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger--damage control by the immune system. J Leukoc Biol. 2012;92:539−551. Epub 2012/05/31. doi: 10.1189/jlb.0212072. 

19. Huang L, Li J, Han Y, et al. Serum Calprotectin Expression as a Diagnostic Marker for Sepsis in Postoperative Intensive Care Unit Patients. J Interferon Cytokine Res. 2016;36:607−616. Epub 2016/09/09. doi: 10.1089/jir.2016.0037.

20. Jonsson N, Nilsen T, Gille-Johnson P, et al. Calprotectin as an early biomarker of bacterial infections in critically ill patients: an exploratory cohort assessment. Crit Care Resusc. 2017;19:205−213. 

21. Laird AM, Miller PR, Kilgo PD, et al. Relationship of early hyperglycemia to mortality in trauma patients. J Trauma. 2004;56:1058−1062.

22. Bochicchio GV, Sung J, Joshi M, et al. Persistent hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma. 2005;58:921−924.  

23. Rahmqvist M, Samuelsson A, Bastami S, Rutberg H. Direct health care costs and length of hospital stay related to health care-acquired infections in adult patients based on point prevalence measurements. Am J Infect Control. 2016;44:500−506. Epub 2016/03/14. doi: 10.1016/j.ajic.2016.01.035. 

24. Máca J, Burša F, Ševčík P, et al. Alarmins and Clinical Outcomes After Major Abdominal Surgery-A Prospective Study. J Invest Surg. 2017;30:152−161. Epub 2016/09/30. doi: 10.1080/08941939.2016.1231855.

25. Nilsen T, Sunde K, Larsson A. A new turbidimetric immunoassay for serum calprotectin for fully automatized clinical analysers. J Inflamm (Lond). 2015;12:45. Epub 2015/07/25. doi: 10.1186/s12950-015-0090-3.

Labels
Anaesthesiology, Resuscitation and Inten Intensive Care Medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#