#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dysfibrinogenaemia and afibrinogenaemia in the Czech Republic


Authors: R. Kotlín;  E. Ceznerová;  J. Loužil;  J. Štikarová;  O. Pastva;  J. Suttnar;  P. Salaj;  J. E. Dyr
Authors‘ workplace: Ústav hematologie a krevní transfuze, Praha
Published in: Transfuze Hematol. dnes,23, 2017, No. Supplementum1, p. 8-19.
Category:

Overview

Fibrinogen is a key glycoprotein of blood coagulation. During haemocoagulation fibrinogen is converted to fibrin. Congenital dysfibrinogenemia is a disease wherein an inherited abnormality in the fibrinogen molecule results in defective fibrin clot formation. Hereditary hypofibrinogenemia is a disease wherein an inherited abnormality in the fibrinogen molecule results in low fibrinogen level in plasma.

36 unrelated families in the Czech Republic suspected with either dysfibrinogenemia or afibrinogenemia were examined. Four patients presented with thrombosis, eight patients presented with bleeding tendencies and others were asymptomatic. Heterozygous point mutations Aα Arg16Cys (Fibrinogen Nový Jičín, Ostrava I), Aα Arg16His (Fibrinogen Praha II, Ostrava II), Aα Asn106Asp (Fibrinogen Plzeň), γ Tyr363Asn (Fibrinogen Praha III), γ Tyr262Cys (Fibrinogen Liberec) and γ Arg275His (Fibrinogen Brno) were found to be the direct causes of dysfibrinogenemias in the carriers.

Molecular genetics experiments revealed inherited mutations in 13 unrelated families causing hereditary dysfibrinogenemia. In one case acquired dysfibrinogenemia secondary to multiple myeloma was found.

Key words:
fibrinogen – dysfibrinogenaemia – afibrinogenaemia – coagulation


Sources

1. Suttnar J, Dyr JE, Fořtová H, Pristach J. Determination of fibrinopeptides by high performance liquid chromatography. Biochem Clin Bohemoslov 1989;18:17–25.

2. Pavlík J, Jaroš F, Loučka M, Veselý P. Aplikovaná statistika, Vydavatelství VŠCHT Praha, Praha, 2005.

3. Laemmli, UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–685.

4. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins from silver-stained Polyacrylamide Gels. Anal Chem 1996;68:850–858.

5. Hanss M, Biot F. A database for human fibrinogen variants. Ann New York Acad Sci 2001;936:89–90.

6. Kotlín R, Chytilová M, Suttnar J, et al Fibrinogen Nový Jičín and Praha II: Cases of hereditary Aα 16 Arg → Cys and Aα 16 Arg → His dysfibrinogenemia. Thromb Res 2007;121:75–84.

7. Kotlín R, Blažek B, Suttnar J, Kvasnička J, Dyr JE. Dysfibrinogenemia in childhood: two cases of congenital dysfibrinogens. Blood Coagul Fibrinolys 2010;21:640–648.

8. Reber P, Furlan M, Beck EA, Finazzi G, Buelli M, Barbui T. Fibrinogen Bergamo I (A alpha 16Arg→Cys): susceptibility towards thrombin following aminoethylation, methylation or carboxamidomethylation of cysteine residues. Thromb Haemost 1985;54:390–393.

9. Loreth RM, Meyer M, Albert FW. Fibrinogen Kaiserslautern III: a new case of congenital dysfibrinogenemia with Aalpha 16 Arg→Cys substitution. Haemostasis 2001;31:12–17.

10. Mathonnet F, Peltier JY, Roda L, et al. Three new cases of dysfibrinogenemia: Poissy III, Saint-Germain I and Tahiti. Thromb Res 2001;103:201–207.

11. Stucki B, Zenhäusern R, Biedermann B, et al. Fibrinogens Bern IV, Bern V and Milano XI: three dysfunctional variants with amino acid substitutions in the thrombin cleavage site of the Aalpha-chain. Blood Coagul Fibrinolysis 1999;10:93–99.

12. Alving BM, Henschen AH. Fibrinogen giessen I: a congenital homozygously expressed dysfibrinogenemia with A alpha 16 Arg→His substitution. Am J Hematol 1987;25:479–482.

13. Kotlín R, Zichová K, Suttnar J, et al. Congenital dysfibrinogenemia Aα Gly13Glu associated with bleeding during pregnancy. Thromb Res 2011;127:277–278.

14. Kotlín R, Suttnar J, Čápová I, Hrachovinová I, Urbánková M, Dyr JE. Fibrinogen Šumperk II: Dysfibrinogenemia in an individual with two coding mutations. Am J Hematol 2012;87:555–557.

15. Riedelová-Reicheltová Z, Kotlín R, Suttnar J, et al. A novel natural mutation AαPhe98Ile in the fibrinogen coiled-coil affects fibrinogen function. Thromb Haemost 2014;111:79–87.

16. Kotlín R, Reicheltová Z, Malý M, et al. Two cases of congenital dysfibrinogenemia associated with thrombosis: Fibrinogen Praha III and Fibrinogen Plzen. Thromb Haemost 2009;102:479–486.

17. Kotlín R, Reicheltová Z, Suttnar J, et al. Two novel fibrinogen variants in the C-terminus of the Bbeta-chain : fibrinogen Rokycany and fibrinogen Znojmo. J Thromb Thrombolys 2010;30:311–318.

18. Morris TA, Marsh JJ, Chiles PG, et al. High prevalence of dysfibrinogenemia among patients with chronic thromboembolic pulmonary hypertension. Blood 2009;114:1929–1936.

19. Hanss MML, Ffrench PO, Mornex JF, et al. Two novel fibrinogen variants found in patients with pulmonary embolism and thein families. J Thromb Haemost 2003;1:1251–1257.

20. Kotlín R, Reicheltová Z, Sobotková A, et al. Three cases of abnormal fibrinogens: Šumperk (Bbeta His67Leu), Uničov (Bbeta Gly414Ser), and Brno (gammaArg275His). Thromb Haemost 2008;100:1199–1200.

21. Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997;389:455–462.

22. Olexa SA, Budzynski AZ. Evidence for four different polymerization sites involved in human fibrin formation. Proc Natl Acad Sci USA 1980;77:1374–1378.

23. Blombäck B, Blombäck M, Edman P, Hessel B. Human fibrinopeptides. Isolation, characterization and structure. Biochim Biophys Acta 1966;115:371–396.

24. Witt I, Müller H. Phosphorus and hexose content of human foetal fibrinogen. Biochim Biophys Acta 1970;221:402–404.

25. Seydewitz HH, Kaiser C, Rothweiler H, Witt I. The location of a second in vivo phosphorylation site in the A alpha-chain of human fibrinogen. Thromb Res 1984;33:487–498.

26. Maurer MC, Peng JL, An SS, Trosset JY, Henschen-Edman A, Scheraga HA. Structural examination of the influence of phosphorylation on the binding of fibrinopeptide A to bovine thrombin. Biochemistry 1998;37:5888–5902.

27. Pratt KP, Côté HCF, Chung DW, Stenkamp RE, Davie EW. The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro. Proc Natl Acad Sci USA 1997;94:7176–7181.

28. Kotlín R, Sobotková A, Suttnar J, et al. A novel fibrinogen variant – Liberec: dysfibrinogenaemia associated with gamma Tyr262Cys substitution. Eur J Haematol 2008;81:123–129.

29. Marchi R, Loyau S, Angles-Cano E, Weisel JW. Structure and pro-perties of clots from fibrinogen Bicêtre II (gamma 308 Asn→Lys). Increased permeability due to larger pores, thicker fibers, and decreased rigidity. Ann New York Acad Sci 2001;936:125–128.

30. Kotlín R, Pastva O, Štikarová J, et al. Two novel mutations in the fibrinogen γ nodule. Thromb Res 2014;134:901–908.

31. Meyer M, Bergmann F, Brennan SO. Novel fibrinogen mutation (γ 313 Ser → Asn) associated with hypofibrinogenemia in two unrelated families. Blood Coagulation and Fibrinolysis 2006;17:63–67.

32. Brennan SO, Davis RL, Chitlur M. New fibrinogen substitution (γSer313Arg) causes diminished γ chain expression and hypodysfibrinogenaemia. Thromb Haemost 2010;103:478–479.

33. Štikarová J, Blatný J, Kotlín R, et al. Novel homozygous fibrinogen Aa chain truncation causes severe afibrinogenemia with life threatening complications in a two-year-old boy. Thromb Res 2013;132:490–492.

34. Zapletal O, Blatný J, Köhlerová S, Fiamoli V, Kotlín R, Dyr JE. Závažné spontánní intrakraniální krvácení u 11měsíčního chlapce s vrozenou afibrinogenemií. Čes Slov Pediat 2014;69:291–294.

35. Kotlín R, Sobotková A, Riedel T, et al. Acquired dysfibrinogemia secondary to multiple myeloma. Acta Haematol 2008;120:75–81.

37. Vokurka M, Hugo J a kol. Velký lékařský slovník On-line. 5. Vydání. Maxdorf, 2002. Dostupné z: <http://www.maxdorf.cz/maxdorf/vls/index.php?action=detail&id=019178&what=myelom&ctest=1>, staženo: 11. 8. 2017.

38. DiMinno G, Coraggio F, Cerbone AM, et al. A myeloma paraprotein with specificity for platelet glycoprotein IIIa in a patient with a fatal bleeding disorder. J Clin Invest 1986;77:157–164.

39. O’Kane MJ, Wisdom GB, Desai ZR, Archbold GPR. Inhibition of fibrin monomer polymerisation by myeloma immunoglobulin. J Clin Pathol 1994;47:266–268.

40. Ruiz-Arguelles A. Spontaneous reversal of acquired autoimmune dysfibrinogenemia probably due to an antiidiotypic antibody directed to an interspecies cross-reactive idiotype expressed on antifibrinogen antibodies. J Clin Invest 1988;82:958–963.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue Supplementum1

2017 Issue Supplementum1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#