#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The role of FLT3 mutations in the pathogenesis of acute myeloid leukemia


Authors: J. Gazdová;  D. Dvořáková;  I. Ježíšková;  F. Rázga;  T. Jurček;  J. Mayer
Authors‘ workplace: Centrum molekulární biologie a genové terapie, Interní hematoonkologická klinika, FN Brno a LF MU
Published in: Transfuze Hematol. dnes,15, 2009, No. 4, p. 229-236.
Category: Comprehensive Reports, Original Papers, Case Reports

Overview

FLT3 (FMS-like tyrosine kinase 3) is a tyrosine kinase receptor expressed by early hematopoietic progenitor cells and is essential for its normal development and proliferation. Activating mutations of this kinase are found in approximately 40% of all AML cases and are therefore one of the most common genetic alterations observed in AML. Mutations in FLT3 gene lead to constitutive phosphorylation of the receptor and consecutive activation of downstream signalling pathways resulting in uncontrolled cell proliferation. FLT3 mutational status, especially internal tandem duplications in exons 14 and 15, appears to be a significant prognostic indicator associated with a distinctly worse clinical outcome in AML patients with normal cytogenetics in terms of shorter complete remission duration (CRD) and disease free survival (DFS). Prognostic impact of point mutations in tyrosine kinase domain is less clear and is still under debate. High frequency of FLT3 mutations and its prognostic relevance in both adult and pediatric AML makes it an appropriate target for therapy. There are several FLT3 tyrosine kinase inhibitors tested in ongoing preclinical and clinical trials.

Key words:
FLT3 receptor tyrosine kinase, cytogenetically normal AML, internal tandem duplication, prognostic marker


Sources

1. Parcells B. W, Ikeda KA, Simms-Waldrip T, et al. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Stem Cells 2006; 24: 1174-1184.

2. Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia 2003; 17: 1738-1752.

3. Wodnar-Filipowicz A. Flt3 ligand: Role in control of hematopoietic and immune functions of bone marrow. New Physiol Sci 2003; 18: 247-251.

4. Griffith J, Black J, Fearman C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169-178.

5. Kikushige Y, Yoshimoto G, Miyamoto T, et al. Human FLT3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol 2008; 180: 7358-7367.

6. Adolfsson J, Mansson R, Buza-Vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005;121: 295-306.

7. Forsberg EC, Serwold T, Kogan S, et al. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 2006; 126: 415-426.

8. Adolfsson J, Borge OJ, Bryder D, et al. Upregulation of Flt3 expression within the bone marrow Lin-, Sca1-, c-kit- stem cells compartment is accompanied by loss of self-renewal capacity. Immunity 2001; 15: 659-669.

9. Carow CE, Levenstein M, Kaufmann SH, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089-1096.

10. Mead AJ, Linch DC, Hills RK, et al. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 2007; 110: 1262-1270.

11. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: Correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59-66.

12. Griffith J, Black J, Fearman C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169-178.

13. Choudhary C, Schwable J, Brandts C. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005; 106: 265-273.

14. Bunting KD, Xie XY, Warshawsky I, Hsi ED. Cytoplasmic localization of phosphorylated STAT5 in human acute myeloid leukemia is inversly correlated with Flt3-ITD. Blood 2007; 110: 2775-2776.

15. Stirewalt DL, Meschinchi S, Kussick SJ, et al. Novel FLT3 point mutations within exon 14 found in patients with acute myeloid leukaemia. Brit J Hematol 2004; 124: 481-484.

16. Reindl C, Bagrintseva K, Vempati S, et al. Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood 2006; 107: 3700-3707.

17. Renneville A, Roumier C, Biggio V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22: 915-931.

18. Lin P, Jones D, Medeiros LJ, et al. Activating FLT3 mutations are detectable in chronic and blast phases of chronic myeloproliferative disorders other than chronic myeloid leukemia. Am J Clin Pathol 2006; 126: 530-533.

19. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326-4335.

20. Peková S, Dvořák M. Molecular variability of FLT3/ITD mutants and their impact on the differentiation program of 32D cells: implication for the biological properties of AML blasts. Transfuze Hematol dnes 2009; 15: 38-39.

21. Opterman JT, Iwasaki H, Ong CC, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 2005; 307: 1101-1104.

22. Chen P, Levis M, Brown P, et al. FLT3/ITD mutation signaling includes suppression of SHP-1. J Biol Chem 2004; 280: 5361-5369.

23. Sallmyr A, Fan J, Datta K, et al. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 2008; 111: 3173-3182.

24. Reindl C, Quentmeier H, Petropoulos K, et al. CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res 2009; 1: 2238-2247.

25. Radomska HS, Basseres DS, Zheng R, et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 20: 371-381.

26. Zheng R, Friedman AD, Levis M, et al. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 2004; 103: 1883-1890.

27. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911-1918.

28. Gregory TK, Wald D, Chen Y, et al. Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol 2009; 2: 23.

29. Gale RE, Green C, Allen C, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008; 111: 2776-2784.

30. Mrózek K, Bloomfield CD. Clinical significance of the most common chromosome translocations in adult acute myeloid leukemia. J Natl Cancer Inst Monographs 2008; 39: 52-57.

31. Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adulte de novo myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233-7239.

32. Meshinchi S, Todd AA, Stirewalt DL. Clinical implications of FLT3 mutations in pediatric AML. Blood 2006; 108: 3654-3661.

33. Shih LY, Huang CF, Wu JH. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387-2392.

34. Ponziani V, Gianfaldoni G, Mannelli F, et al. The size of duplication does not add to the prognostic significance of FLT3 internal tandem duplication in acute myeloid leukemia patients. Leukemia 2006; 20: 2074-2076.

35. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006; 107: 3724-3726.

36. Kusec R, Jaksic O, Ostojic S, et al. More on prognostic significance of FLT3/ITD size in acute myeloid leukemia (AML). Blood 2006; 108: 405-406.

37. Meschinchi S, Stirewalt D, Todd AA, et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 2008; 111: 4930-4933.

38. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434-2439.

39. Frohling S, Schlenk RF, Breitruck J, et al. Analysis of FLT3-activating mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML study group Ulm. Blood 2002; 100: 4372-4380.

40. Yanada M, Matsuo K, Suzuki T, et al. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005; 19:1345-1349.

41. Whitman SP, Ruppert AS, Radmacher MD, et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 2008; 111: 1552-1559.

42. Marková J, Trnková Z, Michková P, et al. Monitoring of minimal residual disease in patients with core binding factor acute myeloid leukemia and the impact of C-KIT, FLT3 and JAK2 mutations on clinical outcome. Leukemia Lymphoma 2009; 14: 1-13.

43. Bacher U, Haferlach C, Kern W, et al. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters-an analysis of 3082 patients. Blood 2008; 111: 2527-2537.

44. Beretta C, Gaipa G, Rossi V, et al. Development of a quantitative-PCR method for specific FLT3/ITD monitoring in acute myeloid leukemia. Leukemia 2004; 18: 1441-1444.

45. Gale RE, Hills R, Panagiotis D, et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML 10 and 12 trials. Blood 2005; 106: 3658-3665.

46. Doubek M, Muzik J, Szotkowski T, et al. Is FLT3 internal tandem duplication significant indicator for allogenic transplantation in acute myeloid leukemia? An analysis of patients from the Czech Acute Leukemia Clinical Register (ALERT). Neoplasma 2007; 54: 89-94.

47. Levis M, Small D. FLT3 tyrosine kinase inhibitors. Int J Hematol 2005; 82: 100-107.

48. Small D. Targeting FLT3 for treatment of leukemia. Semin Hematol 2008; 45: 17-21.

49. Piloto O, Wright M, Broen P, et al. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 2007; 109: 1643-1652.

Labels
Haematology Internal medicine Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#