#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Assessment of 11C-methionine for PET/CT examination of patients with a brain tumor – group of 16 patients


Authors: J. Vašina 1;  M. Svoboda 2;  R. Lakomý 2;  T. Kazda 3;  J. Adam 4;  Z. Řehák 1
Authors‘ workplace: Oddělení nukleární medicíny a PET centrum MOÚ, Brno, ČR 1;  Klinika komplexní onkologické péče MOÚ, Brno, ČR 2;  Klinika radiační onkologie MOÚ, Brno, ČR 3;  Ústav jaderného výzkumu, Řež, ČR 4
Published in: NuklMed 2018;7:62-68
Category: Original Article

Overview

Introduction:

FDG PET imaging of the brain is not ideal in patients with a brain tumor due to a high physiological accumulation of FDG in the brain tissue. These suboptimal results stimulated seeking for different radiopharmaceuticals for better imaging of brain tumors.

Goal:

To verify a possiblity of the use of 11C-methionine for evaluation of patients with brain tumors.

Method:

18 patients with brain tumors were included to the phase I clinical trial; 16 of them were evaluated, 12 had a glioblastoma, 2 an astrocytoma, 1 an oligodendroglioma and 1 a testicular tumor metastasis. PET acquisition of all patients was performed after injection of 11C-methionine at 5, 20 and 35 minutes post injection, respectively, to assess the accumulation in the tumors. Safety evaluation of injected tracer was a part of this study.

Results:

Increased accumulation of 11C-methionine in the tumor was detected in all evaluated patients; it reached 2.5fold higher values comparing to a normal brain tissue measured by a maximal value of standardized uptake value (SUVmax).

Conclusion:

11C-methionine is a useful radiopharmaceutical for the assessment of the brain tumor extent in patients with a high-grade gliomas or recurrent or progressive gliomas with a low grade in which a transformation to the high-grade gliomas can be considered.

Key words

: PET/CT, 11C-methionine, brain tumors


Sources
  1. Dušek L, Mužík J, Malúšková D, et al. Cancer Incidence and Mortality in the Czech Republic. Klin Onkol. 2014;27:406-423. doi:10.14735/amko2014406.
  2. Fadrus P, Lakomý R, Hübnerová P, et al. Intrakraniální nádory - diagnostika a terapie. Interní Med. 2010;12:376-381
  3. Segtnan EA, Hess S, Grupe P, Høilund-Carlsen PF. 18F-fluorode -oxyglucose  PET/computed tomography for primary brain tumors. PET Clin. 2015;10:59-73. doi:10.1016/j.cpet.2014.09.005.
  4. Warburg O, Posener K, Negelein E VIII. The metabolism of cancer cells. Biochem Zool 1924;152:129–169
  5. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-1033. doi: 10.1126/science.1160809
  6. Brink I, Schumacher T, Mix M et al. Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer. Eur J Nucl Med Mol Imaging 2004;31:1614 [online]. [cit. 2018-08-22]. Dostupné na: https://doi.org/10.1007/s00259-004-1606-x
  7. Kitajima K, Nakamoto Y, Okizuka H et al. Accuracy of whole-body FDG-PET/CT for detecting brain metastases from non-central nervous system tumors. Ann Nucl Med 2008;22:595 [online]. [cit. 2018-08-22]. Dostupné na: https://doi.org/10.1007/s12149-008-0145-0
  8. Ferda J, Ferdová E, Baxa J, et al. Lekce z molekulárního zobrazování: hodnocení mozkových nádorů pomocí PET/MR. Ces Radiol, 2016;70:205-218
  9. Choi SJ, Kim JS, Kim JH, et al. [18F]3’-deoxy-3’-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32:653-659
  10. Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncol. 2014;16:434-440. doi:10.1093/neu-onc/not199
  11. Filss CP, Galldiks N, Stoffels G, et al. Comparison of 18F-FET PET and perfusion-weighted  MR  imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med. 2014;55:540-545. doi:10.2967/jnumed.113.129007.
  12. Glaudemans AWJM, Enting RH, Heesters MAAM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40:615-635. doi:10.1007/s00259-012-2295-5
  13. Bergström M, Collins VP, Ehrin E, et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr. 1983;7:1062-1066
  14. Ericson K, Lilja A, Bergström M, et al. Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr. 1985;9:683-689
  15. Derlon JM, Bourdet C, Bustany P, et al. [11C]L-methionine uptake in gliomas. Neurosurgery. 1989;25:720-728
  16. Sasaki M, Kuwabara Y, Yoshida T, et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluoro deoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med. 1998;25:1261-1269
  17. Sánchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging. 2004;31:44-51
  18. Smits A, Baumert BG. The Clinical Value of PET with Amino Acid Tracers for Gliomas WHO Grade II. Int J Mol Imaging. 2011;2011:372509. doi: 10.1155/2011/372509
  19. Kawai N, Maeda Y, Kudomi N, et al. Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging. 2011;38:441-450. doi:10.1007/s00259-010-1645-4
  20. Iuchi T, Hatano K, Uchino Y, et al. Clinical Investigation: Methionine Uptake and Required Radiation Dose to Control Glioblastoma. Int J Radiat Oncol Biol Phys. 2015;93:133-140. doi:10.1016/j.ijrobp.2015.04.044
  21. Lee IH, Piert M, Gomez-Hassan D, et al. Clinical Investigation: Association of 11C-Methionine PET Uptake With Site of Failure After Concurrent Temozolomide and Radiation for Primary Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys. 2009;73:479-485. doi:10.1016/j.ijrobp.2008.04.050
  22. Lakomý R, Fadrus P, Slampa P, et al. Multimodal treatment of glioblastoma multiforme: results of 86 consecutive patients diagnosed in period 2003-2009. Klin Onkol. 2011;24:112-120
  23. Chung JK, Kim Y, Kim S et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med 2002;29:176 [online]. [cit. 2018-08-22]. Dostupné na: https://doi.org/10.1007/s00259-001-0690-4
  24. Harris SM, Davis JC, Snyder SE et al. Evaluation of the Biodistribution of 11C-Methionine in Children and Young Adults. J Nucl Med 2013;54:1902-1908 [online]. [cit. 2018-08-22]. Dostupné na: https://doi.org/10.2967/jnumed.112.118125
  25. Vander Borght T, Asenbaum S, Bartenstein P et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med 2006;33:1374-1380 [online]. [cit. 2018-08-22]. Dostupné na: https://doi.org/10.1007/s00259-006-0206-3
Labels
Nuclear medicine Radiodiagnostics Radiotherapy
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#