#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gliflozins slow down the progression of diabetic kidney disease


Authors: Vladimír Tesař;  Jan Vachek
Authors‘ workplace: Klinika nefrologie 1. LF UK a VFN v Praze
Published in: Vnitř Lék 2017; 63(10): 723-727
Category: Reviews

Overview

Until recently progression of diabetic kidney disease could have been slowed down only by the inhibition of the renin-angiotensin system. Inhibitors of SGLT2 (sodium-glucose transporter 2) in the proximal tubulus of the kidney induce natriuresis and by the activation of the tubuloglomerular feedback increase the tone of the afferent arteriole and decrease the glomerular pressure. Empagliflozin in the study EMPA-REG Outcome significantly decreased the risk of progression of diabetic kidney disease and further analyses also demonstrated its potent antiproteinuric effect. Taking into consideration the concomitant cardioprotective and renoprotective effect of empagliflozin and high mortality, cardiovascular morbidity and risk of progression into end-stage renal disease of diabetic kidney disease treatment with gliflozins should be considered in all patients with diabetic nephropathy. Exact place of gliflozins in the treatment of patients with diabetic kidney disease will be established by the further ongoing studies with other gliflozins with primary renal endpoints.

Key words:
diabetic kidney disease – empagliflozin – glomerular hypertension – progression


Sources

1. Haynes R, Staplin N, Emberson J et al. Evaluating the contribution of the cause of kidney disease to prognosis in CKD: results from the Study of Heart and Renal Protection (SHARP). Am J Kidney Dis 2014; 64(1): 40–48. Dostupné z DOI: <http://dx.doi.org/10.1053/j.ajkd.2013.12.013>

2. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 1982; 307(11): 652–659.

3. Pedersen EB, Mogensen CE. Effect of antihypertensive treatment on urinary albumin excretion, glomerular filtration rate, and renal plasma flow in patients with essential hypertension. Scand J Clin Lab Invest 1976; 36(3): 231–237.

4. Anderson S, Rennke HG, Garcia DL et al. Short and long term effects of antihypertensive therapy in the diabetic rat. Kidney Int 1989; 36(4): 526–536.

5. Lewis EJ, Hunsicker LG, Bain RP et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993; 329(20): 1456–1462. Erratum in N Engl J Med 1993; 330(2): 152.

6. Maschio G, Alberti D, Janin G et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 1996; 334(15): 939–945.

7. Lewis EJ, Hunsicker LG, Clarke WR et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851–860.

8. Brenner BM, Cooper ME, de Zeeuw D et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12): 861–869.

9. Parving HH, Lehnert H, Brochner-Mortensen J et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345(12): 870–878.

10. Ruggenenti P, Fassi A, Ilieva AP et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med 2004; 351(19): 1941–1951.

11. Haller H, Ito S, Izzo JL et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 2011; 364(10): 907–917. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1007994>.

12. Fried LF, Emanuele N, Zhang JH et al. Combined angiotensin inhibition for the treatement of diabetic nephropathy. N Engl J Med 2013; 369(20): 1892–1903. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1303154>. Erratum in N Engl J Med 2014; 158: A7255.

13. Parving HH, Brenner BM, McMurray JJ et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 2012; 367(23): 2204–2213. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1208799>.

14. Mann JF, Green D, Jamerson K et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 2010; 21(3): 527–535. <http://dx.doi.org/10.1681/ASN.2009060593>.

15. De Zeeuw D, Akizawa T, Audhya P et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 2013; 369(26): 2492–2503. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1306033>.

16. Kalantar-Zadeh K, Kovesdy CP. Should restrictions be relaxed for metformin use in chronic kidney disease? No, we should never again compromise safety! Diabetes Care 2016; 39(7): 1281–1286. Dostupné z DOI: <http://dx.doi.org/10.2337/dc15–2327>.

17. Hung AM, Roumie CL, Greevy RA et al. Comparative effectiveness of incident oral antidiabetic drugs on kidney function. Kidney Int 2012; 81(7): 698–706. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2011.444>.

18. Komajda M, McMurray JJ, Beck-Nielsen H et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J 2010; 31(7): 824–831. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehp604>.

19. Cooper ME, Perkovic V, McGill JB et al. Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhbitor linagliptin in type 2 diabetes. Am J Kidney Dis 2015; 66(3): 441–449. Dostupné z DOI: <http://dx.doi.org/10.1053/j.ajkd.2015.03.024>.

20. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117–2128. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1504720>.

21. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375(4): 323–334. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1515920>.

22. Cherney DZ, Zinman B, Inzucchi SE et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2017; 5(8): 610–621. Dostupné z DOI: <http://dx.doi.org/10.1016/S2213–8587(17)30182–1>.

23. Cherney DZ, Cooper ME, Tikkanen I et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HBA1c reductions with empagliflozin. Kidney Int 2017. pii: A0085–2538(17)30477–5. Dostupné z DOI: <http://dx.doi.org/10.1016/j.kint.2017.06.017>.

24. Heerspink HJL, Desai M, Jardine M et al. Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol 2016; 28(1): 368–375: Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2016030278>.

25. De Boer IH, Kahn SE. SGLT2 inhibitors – sweet success for diabetic kidney disease? J Am Soc Nephrol 2017; 28(1): 7–10. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2016060650>.

26. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644–657. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1611925>.

27. Mann JFE, Orsted DD, Brown-Frandsen K et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 2017; 377(9): 839–848. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1616011>.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 10

2017 Issue 10

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#