#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic background of tumors originating from adrenomedullar and extraadrenal chromaffin tissue –  update


Authors: P. Vaňuga 1;  M. Pura 1;  A. Kreze jr. 2
Authors‘ workplace: Endokrinologické oddelenie Národného endokrinologického a diabetologického ústavu Ľubochňa, Slovenská republika, prednosta prim. MU Dr. Peter Vaňuga, PhD. 2 II. interní oddělení FN Na Bulovce Praha, přednosta prim. MU Dr. Jiří Koskuba 1
Published in: Vnitř Lék 2010; 56(12): 1296-1302
Category: Celebration

Overview

It is anticipated that an inherited/ familial forms of pheochromocytomas cause approximately 20% of all pheochromocytomas. Therefore, the classic “rule of 10” axioma used to remember the key features of disorder is invalid. Various mutations in several genes have been identified, which underly syndromes with paragangliomas and/ or pheochromocytomas. The more candidate genes, the less numbers of patients with apparently sporadic forms of the disorder. This review has summarized the current knowledge of the genetic background of tumors orginating from adrenomedullar and extra‑adrenal chromaffin tissue.

Key words:
adrenal gland –  inherited tumor –  pheochromocytoma –  paraganglioma –  neuroblastoma –  ganglioneuroma –  genes


Sources

1. Fränkel F. Ein Fall von doppelseitigem, völlig latent verlaufenen Nebennierentumor und gleichzeitiger Nephritis mit Veränderungen am Circulationsapparat und Retinitis. Arch Pathol Anat Physiol Klin Med 1886; 103: 244– 263.

2. Neumann HP, Vortmeyer A, Schmidt D et al. Evidence of MEN‑ 2 in the original description of classic pheochromocytoma. N Engl J Med 2007; 357: 1311– 1315.

3. Karagiannis A, Mikhailidis DP, Athyros VG et al. Pheochromocytoma: an update on genetics and management. Endocr Relat Cancer 2007; 14: 935– 956.

4. Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma‑ paraganglioma syndromes. J Intern Med 2009; 266: 19– 42.

5. Erlic Z, Neumann HP. Familial pheochromocytoma. Hormones 2009; 8: 29– 38.

6. Koch CA, Pacak K, Chrousos GP. The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors. J Clin Endocrinol Metab 2002; 87: 5367– 5384.

7. Neumann HP, Bausch B, McWhinney SR et al. Germ‑line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002; 346: 1459– 1466.

8. Erlic Z, Rybicki L, Peczkowska M et al. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res 2009; 15: 6378– 6385.

9. Dahia PL, Hao K, Rogus J et al. Novel pheochromocytoma susceptibility loci identified by integrative genomics. Cancer Res 2005; 65: 9651– 9658.

10. Opocher G, Schiavi F, Iacobone M et al. Familial nonsyndromic pheochromocytoma. Ann NY Acad Sci 2006; 1073: 149– 155.

11. Woodward ER, Maher ER. Von Hippel‑ Lindau disease and endocrine tumour susceptibility. Endocr Relat Cancer 2006; 13: 415– 425.

12. Brauch H, Kishida T, Glavac D et al. Von Hippel‑ Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum Genet 1995; 95: 551– 556.

13. Eisenhofer G, Huynh TT, Pacak K et al. Distinct gene expression profiles in norepinephrine‑  and epinephrine producing hereditary and sporadic pheochromocytomas: activation of hypoxia‑driven angiogenic pathways in von Hippel‑ Lindau syndrome. Endocr Relat Cancer 2004; 11: 897– 911.

14. Langer P, Cupisti K, Bartsch DK et al. Adrenal involvement in multiple endocrine neoplasia type 1. World J Surg 2002; 26: 891– 896.

15. Woodward ER, Eng C, McMahon R et al. Genetic predisposition to phaeo­chromocytoma: analysis of candidate genes GDNF, RET and VHL. Hum Mol Genet 1997; 6: 1051– 1056.

16. Vanhorne JB, Andrew SD, Harrison KJ et al. A model for GFRα4 function and a potential modifying role in multiple endocrine neoplasia 2. Oncogene 2005; 24: 1091– 1097.

17. Plaza‑ Menacho I, Burzynski GM, de Groot JW et al. Current concepts in RET‑related genetics, signalling and therapeutics. Trends Genet 2006; 22: 627– 636.

18. Lesueur F, Cebrian A, Robledo M et al. Polymorphisms in RET and its coreceptors and ligands as genetic modifiers of multiple endocrine neoplasia type 2A. Cancer Res 2006; 66: 1177– 1180.

19. Cerrato A, De Falco V, Santoro M. Molecular genetics of medullary thyroid carcinoma: the quest for novel therapeutic targets. J Mol Endocrinol 2009; 43: 143– 155.

20. Toledo RA, Wagner SM, Coutinho FL et al. High penetrance of pheochromocytoma associated with the novel C634Y/ Y791F double germline mutation in the RET protooncogene. J Clin Endocrinol Metab 2010; 95: 1318– 1327.

21. Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin‑dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009; 94: 1826– 1834.

22. Pellegata NS, Quintanilla‑ Martinez L, Siggelkow H et al. Germ‑line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006; 103: 15558– 15563.

23. Georgitsi M, Raitila A, Karhu A et al. Germline CDKN1B/ p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007; 92: 3321– 3325.

24. Owens M, Stals K, Ellard S et al. Germline mutations in the CDKN1B gene encoding p27 Kip1 are a rare cause of multiple endocrine neoplasia type 1. Clin Endocrinol (Oxf) 2009; 70: 499– 500.

25. Igreja S, Chahal HS, Akker SA et al. Assessment of p27 (cyclin‑dependent kinase inhibitor 1B) and aryl hydrocarbon receptor‑ interacting protein (AIP) genes in multiple endocrine neoplasia (MEN1) syndrome patients without any detectable MEN1 gene mutations. Clin Endocrinol (Oxf) 2009; 70: 259– 264.

26. Fritz A, Walch A, Piotrowska K et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res 2002; 62: 3048– 3051.

27. Franklin DS, Godfrey VL, O’Brien DA et al. Functional collaboration between different cyclin‑dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20: 6147– 6158.

28. Molatore S, Kiermaier E, Jung CB et al. Characterization of a naturally‑ occurring p27 mutation predisposing to multiple endocrine tumors. Mol Cancer 2010; 9: 116.

29. Toledo RA, Mendonca BB, Fragoso MC et al. Isolated familial somatotropinoma: 11q13- LOH and gene/ protein expression analysis suggests a possible involvement of AIP also in non‑pituitary tumorigenesis. Clinics 2010; 65: 407– 415.

30. Vogel KS, Brannan CI, Jenkins NA et al. Loss of neurofibromin results in neurotrophin‑independent survival of embryonic sensory and sympathetic neurons. Cell 1995; 82: 733– 742.

31. Bausch B, Koschker AC, Fassnacht M et al. Comprehensive mutation scanning of NF1 in apparently sporadic cases of pheochromocytoma. J Clin Endocrinol Metab 2006; 91: 3478– 3481.

32. Bausch B, Borozdin W, Mautner VF et al. Germline NF1 mutational spectra and loss‑ of‑ heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J Clin Endocrinol Metab 2007; 92: 2784– 2792.

33. Jenne DE, Tinschert S, Reimann H et al. Molecular characterization and gene content of breakpoint boundaries in patients with neurofibromatosis type 1 with 17q11.2 microdeletions. Am J Hum Genet 2001; 69: 516– 527.

34. Bouhanick B, Berry M, Hascouet S et al. Intestinal obstruction and pheochromocytoma in a patient suffering from von Recklinghausen’s disease. Clin Med Insights Endocrinol Diab 2009; 2: 35– 41.

35. Maertens O, Prenen H, Debiec‑ Rychter M et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet 2006; 15: 1015– 1023.

36. Burnichon N, Brière JJ, Libé R et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010; 19: 3011– 3020.

37. Hensen EF, Jordanova ES, van Minderhout IJ et al. Somatic loss of maternal chromosome 11 causes parent‑ of‑ origin‑dependent inheritance in SDHD‑linked paraganglioma and phaeochromocytoma families. Oncogene 2004; 23: 4076– 4083.

38. Hao HX, Khalimonchuk O, Schraders M et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009; 325: 1139– 1142.

39. Ladroue CL, Carcenac R, Leporrier M et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 2008; 359: 2685– 2692.

40. Gaal J, Burnichon N, Korpershoek E et al. Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 2010; 95: 1274– 1278.

41. Yao L, Barontini M, Niederle B et al. Mutations of the metabolic genes IDH1, IDH2, and SDHAF2 are not major determinants of the pseudohypoxic phenotype of sporadic pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 2010; 95: 1469– 1472.

42. McWhinney SR, Pasini B, Stratakis CA. International Carney Triad and Carney‑ Stratakis Syndrome Consortium. Familial gastrointestinal stromal tumors and germ‑line mutations. N Engl J Med 2007; 357: 1054– 1056.

43. Pasini B, McWhinney SR, Bei T et al. Clinical and molecular genetics of patients with the Carney‑ Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008; 16: 79– 88.

44. Matyakhina L, Bei TA, McWhinney SR et al. Genetics of carney triad: recurrent losses at chromosome 1 but lack of germline mutations in genes associated with paragangliomas and gastrointestinal stromal tumors. J Clin Endocrinol Metab 2007; 92: 2938– 2943.

45. Agaimy A, Carney JA. Lymphatics and D2– 40/ podoplanin expression in gastrointestinal stromal tumours of the stomach with and without lymph node metastasis: an immunohistochemical study with special reference to the Carney triad. J Clin Pathol 2010; 63: 229– 234.

46. Neumann HP, Erlic Z, Boedeker CC et al. Clinical predictors for germline mutations in head and neck paraganglioma patients: cost reduction strategy in genetic diagnostic process as fall‑out. Cancer Res 2009; 69: 3650– 3656.

47. Koch CA, Vortmeyer AO, Zhuang Z et al. New insights into the genetics of familial chromaffin cell tumors. Ann NY Acad Sci 2002; 970: 11– 28.

48. Brady S, Lechan RM, Schwaitzberg SD et al. Composite pheochromocytoma/ ganglioneuroma of the adrenal gland associated with multiple endocrine neoplasia 2A: case report with immunohistochemical analysis. Am J Surg Pathol 1997; 21: 102– 108.

49. Matias‑ Guiu X, Garrastazu MT. Composite phaeochromocytoma‑ ganglioneuro-blastoma in a patient with multiple endocrine neoplasia type IIA. Histopathology 1998; 32: 281– 282.

50. Lora MS, Waguespack SG, Moley JF et al. Adrenal ganglioneuromas in children with multiple endocrine neoplasia type 2: a report of two cases. J Clin Endocrinol Metab 2005; 90: 4383– 4387.

51. Trochet D, Bourdeaut F, Janoueix‑ Lerosey I et al. Germline mutations of the paired‑like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 2004; 74: 761– 764.

52. Mosse YP, Laudenslager M, Khazi D et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 2004; 75: 727– 730.

53. van Limpt V, Schramm A, van Lakeman Aet al. The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene 2004; 23: 9280– 9288.

54. Bourdeaut F, Trochet D, Janoueix‑ Lerosey I et al. Germline mutations of the paired‑like homeobox 2B (PHOX2B) gene in neuroblastoma. Cancer Lett 2005; 228: 51– 58.

55. Perri P, Bachetti T, Longo L et al. PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene 2005; 24: 3050– 3053.

56. Serra A, Häberle B, König IR et al. Rare occurrence of PHOX2b mutations in sporadic neuroblastomas. J Pediatr Hematol Oncol 2008; 30: 728– 732.

57. Longo L, Panza E, Schena F. Genetic predisposition to familial neuroblastoma: identification of two novel genomic regions at 2p and 12p. Hum Hered 2007; 63: 205– 211.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 12

2010 Issue 12

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#