#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Silver nanoparticles prepared by green synthesis and synergistic effect with antibiotic as the basis of nanoconstruct for the treatment of bacterial infections


Authors: M. Čížek 1,3;  K. Sehnal 1,3,4;  M. Dočekalová 3,4;  M. Staňková 3,4;  M. Gargulák 1,3;  B. Hosnedlová 3,4;  B. Ruttkay-Nedecký 1,4;  R. Kizek 1,2,3,4
Authors‘ workplace: Veterinární a farmaceutická univerzita Brno, Farmaceutická fakulta, Ústav humánní farmakologie a toxikologie , Přednosta: Doc. MVDr. Pavel Suchý, Ph. D. 1;  Wroclaw Medical University, Wroclaw, Polsko, Ústav biomedicínských a environmentálních analýz , Přednosta: prof. Dr. hab. Halina Milnerowicz, MD, Ph. D. 2;  Prevention Medicals, s. r. o., Oddělení výzkumu a vývoje, Vedoucí: Ing. Miroslav Dosoudil 3;  Mendelova univerzita v Brně, Zahradnická fakulta, Ústav vinohradnictví a vinařství, Vedoucí: doc. Ing. Mojmír Baroň, Ph. D. 4
Published in: Prakt. Lék. 2019; 99(4): 154-159
Category: Of different specialties

Overview

Aim: The aim of the project was to design and verify the nanoconstruct as an innovative tool for effective targeting to the bacterial cell.

Methods: The SPIONs/Au/NPs/AB1/GF/AgNPsGS/APO/ATB construct consists of: A – a silver nanoparticle prepared by green synthesis using plant extracts (AgNPsGS); B – apoferritin (APO) with the encapsulated antibiotic (ATB); and C – a superparamagnetic gold nanoparticle modified with graphene sheet and antibody (SPIONs/Au/NPs/AB1/GF).

Results: The highest antibacterial effect (Staphylococcus aureus) was observed in AgNPsGS4 (Thymus serpyllum) at a concentration of 0.4 µg/mL. The effectiveness of encapsulation of the antibiotic into the nanometric structure of apoferritin was about 15% of the applied concentration. Dramatic inhibition of S. aureus was observed in the presence of the nanoconstruct. The biological effect of nanotransporter consists in two main mechanisms. AgNPsGS induce the formation of ROS, which subsequently leads to damage to the bacterial cell membrane and destruction of prokaryotic nucleic acid. In addition to the effect of AgNPsGS, the effect of encapsulated ATB is involved in the treatment of bacterial infection. This antibiotic can be appropriately selected according to the type of infectious disease. Furthermore, a significant synergistic effect of AgNPsGS and ATB also plays a role.

Conclusion: Due to the innovative and functional combination of the effects of AgNPsGS and ATB, a unique therapeutic nanosystem was created.

Keywords:

antibiotics – apoferritin – nanoconstruct – bacterial inhibition – AgNPs – green synthesis


Sources

1. Wall BA, Mateus A, Marshall L, et al. Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. Rome: Food and Agriculture Organization of the United Nations, 2016.

2. Hera A, Koutecká L, Dorn D, Pokludová L. Spotřeba antibiotik a antiparazitik ve veterinarní medicíně v ČR v letech 2003–2008. Věstník ÚSKVBL 2009; 333–338.

3. Durán N, Durán M., de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 2016; 12(3): 789–799.

4. Naika HR, Lingaraju K, Manjunath K, et al. Green synthesis of CuO nanoparticles using Gloriosa Superba L. extract and their antibacterial activity. J Taibah Univ Sci 2015; 9(1): 7–12.

5. Rónavári A, Kovács D, Igaz N, et al. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. Int J Nanomed 2017; 12: 871–883.

6. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12(4): 564–582.

7. Brüssow H. Infection therapy: the problem of drug resistence – and possible solutions. Microb Biotechnol 2017; 10(5): 1041–1046.

8. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals 2013; 6(12): 1543-15–75.

9. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Int Sci 2009; 145(1–2): 83–96.

10. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13(10): 2638–2650.

11. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 2010; 28(11): 580–588.

12. Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 2008; 7(3): 236–241.

13. Ruttkay-Nedecky B, Skalickova S, Kepinska M, et al. Development of new silver nanoparticles suitable for materials with antimicrobial properties. J Nanosci Nanotechnol 2019; 19(5): 2762–2769.

14. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trend Biotech 2016; 34(7): 588–599.

15. Ruozi B, Veratti P, Vandelli MA, et al. Apoferritin nanocage as streptomycin drug reservoir: technological optimization of a new drug delivery system. Int J Pharmacol 2017; 518(1–2): 281–288.

16. Čížek M, Gargulák M, Sehnal K, a kol. Nanočásticemi modifikovaný apoferritinový nanotransportér pro cílený transport cytostatik. Klin Onkol 2019; 32(3): 197–200.

17. Wray W, Boulikas T, Wray VP, Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem 1981; 118(1): 197–203.

18. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord Chem Rev 2018; 357: 1–17.

19. Huh AJ, Kwon YJ. „Nanoantibiotics“: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128–145.

20. Panáček A, Kvítek L, Smékalová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 2018; 13(1): 65–71.

21. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6): 435–446.

22. Betzig E1, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313(5793): 1642–1645.

23. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16(10): 2346–2353.

24. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010; 12(5): 1531–1551.

25. Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomed 2017; 12: 8211–8225.

26. Chudobova D, Nejdl L, Gumulec J, et al. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int J Mol Sci 2013; 14(7): 13592–13614.

27. Kopel P, Chudobova D, Cihalova K, a kol. Antibakteriální přípravek na bázi oxidu grafenu a redukovaného oxidu grafenu s obsahem nanočástic kovů a polokovů. Ú. p. vlastnictví, Česká republika: Mendelova univerzita v Brně, 1–6.

28. Tao Y, Li M, Ren J, Qu X Metal Nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem Soc Rev 2015; 44(23): 8636–8663.

Labels
General practitioner for children and adolescents General practitioner for adults

Article was published in

General Practitioner

Issue 4

2019 Issue 4

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#