#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Antibiofilm activity of agents for disinfection of skin, mucosa, and wound on microorganisms isolated from patients with catheter-related infections


Authors: L. Slobodníková;  Hupková H. †;  J. Koreň;  M. Záborská
Authors‘ workplace: Mikrobiologický ústav LF UK a UNB v Bratislave
Published in: Epidemiol. Mikrobiol. Imunol. 63, 2014, č. 3, s. 168-172
Category: Review articles, original papers, case report

Overview

Aim of the study:
To evaluate the activity of four disinfectious agents used for skin, mucosa and wound disinfection (chlorhexidine digluconate, povidone-iodine, octenidine hydrochloride, super oxygenated water) on the biofilm of Staphylococcus aureus, Escherichia coli and Candida sp. strains, isolated from patients with catheter-related infections.

Material and methods:
The tested agents were applied on 24-hours biofilm in the microtiter plate wells. After 20-minutes exposition, the wells were washed, and the microbial vitality was tested by regrowth method after 24-hours cultivation in fresh culture medium. Biofilm formation was confirmed in a parallel microtiter plate; the quantity of produced biofilm was measured after crystal violet staining spectrophotometrically at 570 nm.

Results:
All four tested disinfectious agents inactivated the biofilm of all S. aureus, E. coli, C. albicans, C. krusei and C. glabrata strains, without respect to the intensity of biofilm production. Three strains of C. tropicalis with intensive biofilm production partially preserved their vitality after exposition to chlorhexidine and povidone-iodine, and 2 strains to octenidine. Super oxygenated water had no effect on yeasts associated with massive biofilm of one C. tropicalis strain, and only partially decreased the vitality of additional two strains.

Conclusions:
The tested disinfectious agents proved in-vitro antibiofilm activity on all microbial strains from catheter-related infections, with exception of three C. tropicalis strains with intensive biofilm production. Octenidine was found to be the most active agent. The results enable to assume, that the tested disinfectious agents, when applied to patients, will inactivate not only the individual microorganisms not protected by biofilm, but also the biofilm on the catheter surfaces approachable by local application. However, C. tropicalis strains producing massive biofilm, protecting them partially from effects of disinfectious agents tested in the present study, still remain a challenge.

Keywords:
disinfectious agents – biofilm – Staphylococcus aureus Escherichia coli Candida sp. – catheter-related infections


Sources

1. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis, 2001;7:277–281.

2. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 2002;15:167–193.

3. Leid JG. Bacterial biofilms resist key host defenses. Microbe, 2009;4:66–70.

4. Kotulová D, Slobodníková L. Citlivosť kmeňov Staphylococcus aureus rastúcich v biofilme na vankomycín, gentamicín a rifampicín. Epidemiol Mikrobiol Imunol, 2010;59:80–87.

5. Cramton SE, Götz F. Biofilm development in Staphylococcus in: Ghannoun M, O`Toole GA (eds) Microbial biofilms, Washington, DC: ASM Press, 2004, 64–84. ISBN 1-55581-294-295.

6. Abad CL, Safdar N. Catheter-related bloodstream infections. Infectious disease special edition, 2011: 84–98 [online] [cit. 2014-22-01]. Dostupný na: www.idse.net/download/BSI_IDSE11_WM.pdf‎

7. Dominic RM, Shenoy S, Baliga S. Candida biofilms in medical devices: Evolving trends. Kathmandu Univ Med J, 2007;5:431–436.

8. Holá V, Růžička F. Biofilmové infekce močových katétrů. Epidemiol Mikrobiol Imunol, 2008;57:47–52.

9. Olejníčková K, Holá V. Porovnání produkce vybraných faktorů virulence Pseudomonas aeruginosa izolovaných z katétrů. Epidemiol Mikrobiol Imunol, 2012;61:21–28.

10. Longmate AG, Ellis KE, Boyle L, Maher S, et al. Elimination of central-venous-catheter-related infections from the intensive care unit. BMJ Qual Saf, 2011;20:174–180.

11. O’Grady NP, Alexander M, Burns LA, Dellinger P, et al. Guidelines for the prevention of intravascular catheter-related infections, 2011. Atlanta (GA): Centers for Disease Control and Prevention (CDC); 2011, 83 s.[online] [cit. 2014-22-01]. Dostupný na http://www.cdc.gov/hicpac/pdf/guidelines/bsi-guidelines-2011.pdf

12. Kováč J, Kováč D. Mikrobiálna dekontaminácia koreňových kanálikov devitálnych zubov. Epidemiol Mikrobiol Imunol, 2012;61:87–97.

13. Sunil KP, Raja BP, Jagadish RG, Uttam A. Povidone Iodine -Revisited. Indian J Dent Advancements, 2011;3:617–620.

14. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev, 1999;12:147–179.

15. Octenidine dihydrochloride. A new topical antimicrobial for local treatment of skin, mucous membranes and wounds [online] [cit. 2014-16-01]. Dostupný na www.oktal_pharma.hr/hr/zastupstva/file/421/603/‎

16. Aquitox D - ošetrenie rán [online] [cit. 2014-16-01]. Dostupný na http://www.aquasystem.sk/stranky/3.Aqvitox_D___Osetrenie_ran).

17. Hübner NO, Siebert J, Kramer A. Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol, 2010;23:244–258.

18. Thorn RM, Lee SW, Robinson GM, Greenman J, Reynolds DM. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. Eur J Clin Microbiol Infect Dis, 2012;31:641–653.

19. Murray PR, et al. Manual of clinical microbiology. 9th ed., Washington, DC: American Society for Microbiology, 2007, 1267 s. ISBN 1-555581-371-2

20. EUCAST guideline for the detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance [online] [cit. 2014-16-01]. Dostupný na http://www.eucast.org/resistance_mechanisms/

21. Stepanovic S, Vukovic D, Hola V, di Bona Ventura G, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathol Microbiol Imunol Scand [B], 2007;115:891–899.

22. Růžička F, Holá V, Votava M, Tejkalová R. Detekce a význam tvorby biofilmu u kvasinek izolovaných z hemokultur. Klin Mikrobiol Inf Lek, 2006;12:150–153.

23. Černohorská L, Votava M. Determination of minimal regrowth concentration (MRC) in clinical isolates of various biofilm-forming bacteria. Folia Microbiol, 2004;49:75–78.

24. Timsit JF, Schwebel C, Bouadma L, Geffroy A, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA, 2009;301:231–241.

25. Shen Y, Stojicic S, Haapasalo M. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. Journal of Endodontics, 2011;37:657–661.

26. Murad CF, Sassone LM, Souza MC, Fidel RAS, et al. Antimicrobial activity of sodium hypochlorite, chlorhexidine and MTAD® against Enterococcus faecalis biofilm on human dentin matrix in vitro. RSBO, 2012;9:143–150.

27. Torres-Capetillo E, Carrillo-Fuentevilla R, De la Garza-Ramos MA, Hernández RM, et al. Antimicrobial efficacy of neutral super-oxidized electrolyzed gel versus chlorhexidine digluconate 0.12% in biofilm formation on orthodontic miniimplants: An in vitro study. J Pharmacognosy Phytother, 2013;5:64–71.

28. Walker JT, Bradshaw, DJ, Fulford, MR, Marsh, PD. Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl Environ Microbiol, 2003;69:3327–3332.

29. Amalaradjou MA, Norris CE, Venkitanarayanan K. Effect of octenidine hydrochloride on planktonic cells and biofilms of Listeria monocytogenes. Appl Environ Microbiol, 2009;75:4089–4092.

30. Presterl E, Suchomel M, Eder M, Reichmann S, et al. Effects of alcohols, povidone-iodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis. J Antimicrob Chemother, 2007;60:417–420.

31. Junka A, Bartoszewicz M, Smutnicka D, Secewicz A, Szymczyk P. Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J, 2013;in press. (doi: 10.1111/iwj.12057)

32. Lamfon H, Al-Karaawi Z, McCullough M, Porter SR, Pratten J. Composition of in vitro denture plaque biofilms and susceptibility to antifungals. FEMS Microbiol Lett, 2005;242:345–351.

33. Kothavade RJ, Kura MM, Valand AG, Panthaki MH. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol, 2010;59:873–880.

34. Hoyer LL, Fundyga R, Hecht JE, Kapteyn JC, et al. Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics, 2011;157:1555–1567.

35. Bizerra FC, Nakamura CV, de Poersch C, Estivalet Svidzinski TI, et al. Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res, 2008;8:442–450.

36. Silva S, Negri M, Henriques M, Oliveira R, et al. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol, 2011;19:241–247.

37. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol, 2006;55:999–1008.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology

Article was published in

Epidemiology, Microbiology, Immunology

Issue 3

2014 Issue 3

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#