#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

GDF15: a new predictive biomarker for type 2 diabetes mellitus in clinical practice


Authors: Andrej Dukát 1;  Juraj Payer 1;  Fedor Šimko 2
Authors‘ workplace: V. interná klinika LF UK a UNB, Nemocnica Ružinov, Bratislava 1;  Ústav patologickej fyziológie LF UK v Bratislave 2
Published in: Diab Obez 2020; 20(40): 88-92
Category:

Overview

Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor β (TGFβ) and is expressed in multiple tissues in man. It was identified more than 20 years ago, however its utility as valuable biomarker was known just recently. It can be easily determined in the circulation. The human GDF-15 gene is located on chromosome 19p13.1–13.2 (35 kDa length form) and is associated with many diseases, including inflammation, cardiovascular diseases, cancer, or obesity. One of these associations are also metabolic disorders and type 2 diabetes mellitus.

Keywords:

biomarkers – type 2 diabetes mellitus – GDF15


Sources
  1. Dukát A, Payer J, Gajdošík J et al. Miesto biomarkerov pri rutinnom manažmente pacientov s chronickým srdcovým zlyhávaním a ich diagnostický a prognostický význam. Lek Obz 2020; 69(7–8): 261–263.
  2. Dukát A, Payer J, Gajdošík J et al. Postavenie kardiálnych biomarkerov u pacientov s chronickým srdcovým zlyhávaním. Lek Obz 2020; 69(6): 214–217.
  3. Emmerson PJ, Duffin KL, Chintharlapalli S et al. GDF15 and Growth Control. Front Physiol 2018; 9: 1712. Dostupné z DOI: < https://doi.org/10.3389/fphys.2018.01712>.
  4. Baek SJ, Okazaki R, Lee SH et al. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 2006; 131(5): 1553–1560. Dostupné z DOI: <http://dx.doi.org/10.1053/j.gastro.2006.09.015>.
  5. Johnen H, Lin S, Kuffner T et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med 2007; 13(11): 1333–1340. Dostupné z DOI: <http://dx.doi.org/10.1038/nm1677>.
  6. Guenancia C, Kahli A, Laurent G et al. Pre-operative growth differentiation factor 15 as a novel biomarker of acute kidney injury after cardiac bypass surgery. Int J Cardiol 2015; 197: 66–71. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2015.06.012>.
  7. Uhlén M, Fagerberg L, Hallstrom BM et al. Tissue-based map of the human proteome. Science 2015; 347(6220): 1260419. Dostupné z DOI: <http://dx.doi.org/10.1126/science.1260419>.
  8. Adela R, Banerjee SK. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J Diabetes Res 2015; 2015: 490842. Dostupné z DOI: <http://dx.doi.org/10.1155/2015/490842>.
  9. Kempf T, Guba-Quint A, Torgenson J et al. Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial. Eur J Endocrinol 2012; 167(5): 671–676. Dostupné z DOI: <http://doi: 10.1530/EJE-12–0466>.
  10. Ho JE, Hwang SJ, Wollert KC et al. Biomarkers of cardiovascular stress and incident chronic kidney disease. Clin Chemistry 2013; 59(11): 1613–1620. Dostupné z DOI: <http://dx.doi.org/10.1373/clinchem.2013.205716>.
  11. Eggers KM, Kempf T, Lagerqvist B et al. Growth-differentiation factor-15 for long-term risk prediction in patients stabilized after an episode of non-ST-segment-elevation acute coronary syndrome. Circ Cardiovasc Genet 2010: 3(1): 89–96. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCGENETICS.109.877456>.
  12. Bao X, Borne Y, Muhammad IF et al. Growth differentiation factor 15 is positively associated with incidence of diabetes mellitus: the Malmö Diet and Cancer–Cardiovascular Cohort. Diabetologia 2019; 62(1): 78–86. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–018–4751–7>.
  13. Berezin AE. Diabetes mellitus related biomarker: the predictive role of growth-differentiation factor-15. Diabetes Metab Syndr 2016: 10(Suppl 1): S54-S57. Dostupné z DOI: <http://dx.doi.org/10.1016/j.dsx.2015.09.016>.
  14. Modi A, Dwiwedi S, Roy D et al. Growth differentiation factor 15 and its role in carcinogenesis: an update. Growth Fact 2019; 37(3–4): 190–207. Dostupné z DOI: <http://dx.doi.org/10.1080/08977194.2019.1685988>.
  15. Lerner L, Hayes TG, Tao N et al. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J Cachexia Sarcopenia Muscle 2015; 6(4): 317–324. Dostupné z DOI: <http://dx.doi.org/10.1002/jcsm.12033>.
  16. Kang YE, Kim HJ, Shong M. Regulation of systemic glucose homeostasis by T helper type 2 cytokines. Diabetes Metab J 2019; 43(5): 549–559. Dostupné z DOI: <http://dx.doi.org/10.4093/dmj.2019.0157>.
  17. Kim JM, Kosak JP, Kim JK et al. NAG-1/GDF-15 transgenic mouse has less white adipose tissue and a reduced inflammatory response. Mediat Inflamm 2013; 2013: 641851. Dostupné z DOI: <http://dx.doi.org/10.1155/2013/641851>.
  18. Lawton LN, Bonaldo MF, Jelenc PC et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene 1997; 203(1): 17–26. Dostupné z DOI: <http://dx.doi.org/10.1016/s0378–1119(97)00485-x>.
  19. Ding Q, Mracek T, Gonzales-Muniesa P et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology 2009; 150(4): 1688–1696. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2008–0952>.
  20. Macia L, Tsai VWW, Nguyen AD et al. Macrophage inhibitory cytokine 1 (MIS-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One 2012; 7(4): e34868. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0034868>.
  21. Vila G, Riedl M, Anderwald C et al. The relationship between insulin resistance and the cardiovascular biomarker growth differentiation factor-15 in obese patients. Clin Chemistry 2011; 57(2): 309–316. Dostupné z DOI: <http://dx.doi.org/10.1373/clinchem.2010.153726>.
  22. Chrysovergis K, Wang X, Kosak J et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obesity 2014; 38(12): 1555–1564. Dostupné z DOI: <http://dx.doi.org/10.1038/ijo.2014.27>.
  23. Li J, Yang L, Qin W et al. Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus. PLoS One 2013; 8(6): e65549. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0065549>.
  24. Koopmann J, Buckhaults P, Brown DA et al. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res 2004; 10(7): 2386–2392. Dostupné z DOI: <http://dx.doi.org/10.1158/1078–0432.ccr-03–0165>.
  25. Kelly JA, Scott Lucia M, Lambert JR. p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density. Cancer Res 2009; 277(1): 38–47. Dostupné z DOI: <http://dx.doi.org/10.1016/j.canlet.2008.11.013>.
  26. Kempf T, Guba-Quint A, Torgenson J et al. Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial. Eur J Endocrinol 2012; 167(5): 671–676. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-12–0466>.
  27. Dostalova I, Roubicek T, Bartlova M et al. Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type-2 diabetes mellitus: the influence of very low caloric diet. Eur J Endocrinol 2009; 161(3): 397–404. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-09–0417>.
  28. Carstensen M, Herder C, Brunner EJ et al. Macrophage inhibitory cytokine-1 is incresed in individuals before type 2 diabetes diagnosis but is not an independent predictor of type 2 diabetes: the Whitehall II study. Eur J Endocrinol 2010; 162(5): 913–917. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-09–1066>.
  29. Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia 2005: 48(6): 1038–1050. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–005–1764–1769>.
  30. Kelly JA, Scott Lucia M, Lambert JR. p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density. Cancer Res 2009; 277(1): 38–47. Dostupné z DOI: <http://dx.doi.org/10.1016/j.canlet.2008.11.013>.
  31. Shimano M, Ouchi N, Walsh K. Cardiokines: recent progress in elucidating the cardiac sectretome. Circulation 2012; 126(21): e327-e332. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.112.150656>.
  32. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162. Dostupné z DOI: <http://dx.doi.org/10.1155/2014/943162>.
  33. Berkman J, Rifkin H. Unilateral nodular diabetic glomerulosclerosis (Kimmelstiel Wilson): report of a case. Metabol Clin Exp 1973; 22(5): 715–722. Dostupné z DOI: <http://dx.doi.org/10.1016/0026–0495(73)90243–6>.
  34. Flegal KM, Graubard BI, Williamson DF et al. Cause specific excess deaths associated with underweight, overweight, and obesity. JAMA 2007; 298(17): 2028–2037. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.298.17.2028>.
  35. Dokkum RPE, Eijkelkamp WBA, Kluppel ACA et al. Myocardial infarction enhances progressive renal damage in an experimental model for cardio-renal interaction. J Am Soc Nephrol 2004; 15(12): 3103–3110. Dostupné z DOI: <http://dx.doi.org/10.1097/01.ASN.0000145895.62896.98>.
  36. Wollert KC, Kempf T. Growth differentiation factor 15 in heart failure: an update. Curr Heart Fail Rep 2012; 9(4): 337–345. Dostupné z DOI: <http://dx.doi.org/10.1007/s11897–012–0113–9>.
  37. Desai AS, Toto R, Jarolim P et al. Association between cardiac biomarkers and the development of EDRF in patients with type 2 diabetes mellitus, anemia, and CKD. Am J Kidney Dis 2011; 58(5): 717–728. Dostupné z DOI: <http://dx.doi.org/10.1053/j.ajkd.2011.05.020>.
  38. Khan SQ, Ng K, Dhillon O et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J 2009; 30(9): 1057–1065. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehn600>.
  39. Lajer M, Jorsal A, Tarnow L et al. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diab Care 2010; 33(7): 1567–1572. Dostupné z DOI: <http://dx.doi.org/10.2337/dc09–2174>.
  40. Zimmers TA, Jin X, Hsiao EC et al. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005; 23(6): 543–548.
  41. van Huyen JPD, Cheval L, Bloch-Faure M et al. GDF15 triggers homeostatic prolife-ration of acid-secreting collecting duct cells. J Am Soc Nephrol 2008; 19(10): 1965–1974. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2007070781>.
  42. Simmonson MS, Tictin M, Debanne SM. The renal transcriptome of db/db mice identifies putative urinary biomarker proteins in patients with type 2 diabetes: a pilot study. Am J Physiol Renal Physiol 2012; 302(7): F820-F829. Dostupné z DOI: <http://dx.doi.org/10.1152/ajprenal.00424.2011>.
  43. Wiklund FE, Bennet AM, Magnusson PK et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell 2010; 9(6): 1057–1064. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1474–9726.2010.00629.x>.
  44. Lind L, Wallentin L, Kempf T et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur Heart J 2009; 30(19): 2346–2353. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehp261>.
  45. Gohar A, Goncalves I, Vrijenhoek J et al. Circulating GDF-15 levels predict future secondary manifestations of cardiovascular disease explicitly in women but not men with atherosclerosis. Int J Cardiol 2017; 241: 430–436. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2017.03.101>.
  46. Cheung Ch-L, Tan KCB, Au PCM et al. Evaluation of GDF15 as a therapeutic target of cardiometabolic diseases in human: A Mendelian randomization study. EBioMed 2019; 41: 85–90. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ebiom.2019.02.021>.
  47. Hingorani AD, Cross J, Kharbanda RK. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 2000; 102(9): 994–999. Dostupné z DOI: <http://dx.doi.org/10.1161/01.cir.102.9.994>.
Labels
Diabetology Obesitology

Article was published in

Diabetes a obezita

Issue 40

2020 Issue 40

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#