#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Extracellular miRNA – biogenesis, function and their use as biomarkers in rheumatic diseases.


Authors: K. Prajzlerová;  M. Filková
Authors‘ workplace: Revmatologická klinika, 1. lékařská fakulta, Univerzita Karlova a Revmatologický ústav, Praha
Published in: Čes. Revmatol., 26, 2018, No. 4, p. 171-179.
Category: Review Article

Overview

MicroRNAs (miRNAs) are small non-coding single-stranded RNAs of about 22 nucleotides in length that act as post-transcriptional regulators of gene expression. Depending on the complementarity between miRNA and target mRNA, cleavage or destabilization or translational suppression of mRNA occurs within RISC complex (RNA induced silencing complex). More than 50% of the genes are controlled by at least one miRNA. Moreover, one miRNA can regulate the expression of several genes, and one gene can be regulated by multiple miRNAs. As gene expression regulators, miRNAs are involved in a variety of biological functions. Dysregulation of miRNAs and their target genes contribute to pathophysiology of many diseases including rheumatological disorders. MiRNAs are also present extracellularly in their stable form in body fluids. Their incorporation into membrane vezicles or protein complexes with Ago2, HDL or nucleophosmin 1 protect them against RNases. Cell-free miRNAs can be delivered to another cell in vitro and maintain their functional potential. Therefore, miRNAs can be considered mediators of intercellular communication. Remarkable stability of cell-free miRNAs and their accessibility in body fluid makes them potential diagnostic or prognostic biomarkers and potential therapeutic targets.

Key words:

miRNA, biomarker, therapy


Sources

1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843–54. PubMed PMID: 8252621.

2. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403(6772): 901–6. doi: 10.1038/35002607. PubMed PMID: 10706289.

3. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294(5543): 853–8. doi: 10.1126/science.1064921. PubMed PMID: 11679670.

4. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature reviews Genetics 2008; 9(2): 102–14. doi: 10.1038/nrg2290. PubMed PMID: 18197166.

5. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer journal (Sudbury, Mass) 2012; 18(3): 215–22. Epub 2012/06/01. doi: 10.1097/PPO.0b013e318250c001. PubMed PMID: 22647357; PubMed Central PMCID: PMCPMC3528102.

6. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs novel biomarkers and extracellular communicators in cardiovascular disease? Circulation research 2012; 110(3): 483 95.

7. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature reviews Genetics 2010; 11(9): 597–610. doi: 10.1038/nrg2843. PubMed PMID: 20661255.

8. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006; 125(5): 887–901. doi: 10.1016/j.cell.2006.03.043. PubMed PMID: 16751099.

9. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014): 235–40. doi: 10.1038/nature03120. PubMed PMID: 15531877.

10. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303(5654): 95–8. doi: 10.1126/science.1090599. PubMed PMID: 14631048.

11. Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends in cell biology 2004;14(4):156-9. PubMed PMID: 15134074.

12. Bhayani MK, Calin GA, Lai SY. Functional relevance of miRNA sequences in human disease. Mutation research 2012; 731(1–2): 14–9. Epub 2011/11/17. doi: 10.1016/j.mrfmmm.2011.10.014. PubMed PMID: 22085809.

13. Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis and rheumatism 2012; 64(6): 1771–9. doi: 10.1002/art.34334. PubMed PMID: 22161761.

14. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. The Journal of biological chemistry 2009; 284(27): 17897–901. doi: 10.1074/jbc.R900012200. PubMed PMID: 19342379; PubMed Central PMCID: PMC2709356.

15. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15–20. doi: 10.1016/j.cell.2004.12.035. PubMed PMID: 15652477.

16. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. Rna 2009; 15(1): 21–32. doi: 10.1261/rna.1399509. PubMed PMID: 19029310; PubMed Central PMCID: PMC2612776.

17. Esteller M. Non-coding RNAs in human disease. Nature reviews Genetics. 2011;12(12):861-74. doi: 10.1038/nrg3074. PubMed PMID: 22094949.

18. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukaemia. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(24): 15524-9. doi: 10.1073/pnas.242606799. PubMed PMID: 12434020; PubMed Central PMCID: PMCPMC137750.

19. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochemical et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2010; 1799(10): 694–701.

20. Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell cycle 2007; 6(9): 1001–5. Epub 2007/04/26. doi: 10.4161/cc.6.9.4209. PubMed PMID: 17457051.

21. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 2011; 11(10): 726–34. doi: 10.1038/nrc3130. PubMed PMID: 21941284; PubMed Central PMCID: PMCPMC3307543.

22. Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 2012; 22(3): 504–15. Epub 2011/08/25. doi: 10.1038/cr.2011.137. PubMed PMID: 21862971; PubMed Central PMCID: PMCPMC3292299.

23. Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, et al. Detection and characterization of placental microRNAs in maternal plasma. Clinical chemistry. 2008;54(3):482-90. doi: 10.1373/clinchem.2007.097972. PubMed PMID: 18218722.

24. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research. 2008; 18(10): 997–1006.

25. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105(30): 10513–8. doi: 10.1073/pnas.0804549105. PubMed PMID: 18663219; PubMed Central PMCID: PMCPMC2492472.

26. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 2010; 16(1): 34–8. doi: 10.1111/j.1601-0825.2009.01604.x. PubMed PMID: 19627513; PubMed Central PMCID: PMCPMC2844919.

27. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1(1):7. doi: 10.1186/1758-907X-1-7. PubMed PMID: 20226005; PubMed Central PMCID: PMCPMC2847997.

28. Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 2010; 124(3): 217–26. doi: 10.1007/s00414-009-0402-3. PubMed PMID: 20145944; PubMed Central PMCID: PMCPMC2855015.

29. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clinical chemistry. 2010; 56(11): 1733–41. doi: 10.1373/clinchem.2010.147405. PubMed PMID: 20847327; PubMed Central PMCID: PMC4846276.

30. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010; 101(10): 2087–92. doi: 10.1111/j.1349-7006.2010.01650.x. PubMed PMID: 20624164.

31. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends in cell biology. 2009;19(2):43-51. Epub 2009/01/16. doi: 10.1016/j.tcb.2008.11.003. PubMed PMID: 19144520.

32. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic acids research. 2010;38(20):7248-59. doi: 10.1093/nar/gkq601. PubMed PMID: 20615901; PubMed Central PMCID: PMCPMC2978372.

33. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences. 2011; 108(12): 5003–8.

34. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic acids research. 2011; 39(16): 7223–33. doi: 10.1093/nar/gkr254. PubMed PMID: 21609964; PubMed Central PMCID: PMCPMC3167594.

35. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature cell biology. 2011; 13(4) :423–33.

36. Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Roxe T, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013; 33(6): 1392–400. doi: 10.1161/ATVBAHA.112.300741. PubMed PMID: 23559634.

37. Maggi LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR, et al. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Molecular and cellular biology. 2008; 28(23): 7050-65.

38. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. The Journal of biological chemistry. 2010;285(23):17442-52. doi: 10.1074/jbc.M110.107821. PubMed PMID: 20353945; PubMed Central PMCID: PMC2878508.

39. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54(4):1237-48. Epub 2011/07/02. doi: 10.1002/hep.24504. PubMed PMID: 21721029; PubMed Central PMCID: PMCPMC3310362.

40. Turchinovich A, Samatov TR, Tonevitsky AG, Burwinkel B. Circulating miRNAs: cell-cell communication function? Front Genet. 2013; 4: 119. doi: 10.3389/fgene.2013.00119. PubMed PMID: 23825476; PubMed Central PMCID: PMCPMC3695387.

41. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009; 2(100): ra81. doi: 10.1126/scisignal.2000610. PubMed PMID: 19996457.

42. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology. 2007;9(6):654-9. doi: 10.1038/ncb1596. PubMed PMID: 17486113.

43. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011; 2: 282. doi: 10.1038/ncomms1285. PubMed PMID: 21505438; PubMed Central PMCID: PMCPMC3104548.

44. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 2012; 109(31): E2110-6. doi: 10.1073/pnas.1209414109. PubMed PMID: 22753494; PubMed Central PMCID: PMCPMC3412003.

45. Iguchi H, Kosaka N, Ochiya T. Secretory microRNAs as a versatile communication tool. Communicative & integrative biology. 2010; 3(5): 478–81. doi: 10.4161/cib.3.5.12693. PubMed PMID: 21057646; PubMed Central PMCID: PMC2974086.

46. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137(6): 1005–17. doi: 10.1016/j.cell.2009.04.021. PubMed PMID: 19524505; PubMed Central PMCID: PMCPMC2722880.

47. Nagata Y, Nakasa T, Mochizuki Y, Ishikawa M, Miyaki S, Shibuya H, et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a. Arthritis and rheumatism 2009; 60(9): 2677–83. doi: 10.1002/art.24762. PubMed PMID: 19714650.

48. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis and rheumatism 2008; 58(4): 1001–9. doi: 10.1002/art.23386. PubMed PMID: 18383392.

49. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis research & therapy 2008; 10(4): R101. doi: 10.1186/ar2493. PubMed PMID: 18759964; PubMed Central PMCID: PMCPMC2575615.

50. Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis and rheumatism 2011; 63(6): 1582–90. doi: 10.1002/art.30321. PubMed PMID: 21425254.

51. Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, et al. Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis and rheumatism 2012; 64(10): 3240–5. doi: 10.1002/art.34550. PubMed PMID: 22674011.

52. Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R, et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med 2011; 3(10): 605–15. doi: 10.1002/emmm.201100171. PubMed PMID: 21882343; PubMed Central PMCID: PMCPMC3258486.

53. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474(7353): 649–53. doi: 10.1038/nature10112. PubMed PMID: 21654750.

54. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. The New England journal of medicine 2013; 368(18): 1685–94. doi: 10.1056/NEJMoa1209026. PubMed PMID: 23534542.

55. Ottosen S, Parsley TB, Yang L, Zeh K, van Doorn LJ, van der Veer E, et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrobial agents and chemotherapy 2015; 59(1): 599–608. doi: 10.1128/AAC.04220-14. PubMed PMID: 25385103; PubMed Central PMCID: PMCPMC4291405.

56. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005 ;309(5740): 1577–81. doi: 10.1126/science.1113329. PubMed PMID: 16141076.

57. Jopling CL, Schutz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 2008; 4(1): 77–85. doi: 10.1016/j.chom.2008.05.013. PubMed PMID: 18621012; PubMed Central PMCID: PMCPMC3519368.

58. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327(5962): 198–201. doi: 10.1126/science.1178178. PubMed PMID: 19965718; PubMed Central PMCID: PMCPMC3436126.

59. Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis research & therapy 2010; 12(3): 1.

60. Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PloS one. 2013; 8(7): e69118. doi: 10.1371/journal.pone.0069118. PubMed PMID: 23874885; PubMed Central PMCID: PMC3715465.

61. Filkova M, Aradi B, Senolt L, Ospelt C, Vettori S, Mann H, et al. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Annals of the rheumatic diseases 2014;73(10):1898-904. Epub 2013/07/31. doi: 10.1136/annrheumdis-2012-202815. PubMed PMID: 23897768; PubMed Central PMCID: PMCPmc4173742.

62. Sode J, Krintel SB, Carlsen AL, Hetland ML, Johansen JS, Horslev-Petersen K, et al. Plasma MicroRNA Profiles in Patients with Early Rheumatoid Arthritis Responding to Adalimumab plus Methotrexate vs Methotrexate Alone: A Placebo-controlled Clinical Trial. The Journal of rheumatology 2018; 45(1): 53–61. doi: 10.3899/jrheum.170266. PubMed PMID: 29142030.

63. Hruskova V, Jandova R, Vernerova L, Mann H, Pecha O, Prajzlerova K, et al. MicroRNA-125b: association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis research & therapy 2016; 18(1): 124. doi: 10.1186/s13075-016-1023-0. PubMed PMID: 27255643; PubMed Central PMCID: PMCPMC4890522.

64. Duroux-Richard I, Pers Y-M, Fabre S, Ammari M, Baeten D, Cartron G, et al. Circulating miRNA-125b is a potential biomarker predicting response to rituximab in rheumatoid arthritis. Mediators of inflammation 2014; 2014.

65. Castro-Villegas C, Perez-Sanchez C, Escudero A, Filipescu I, Verdu M, Ruiz-Limon P, et al. Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFalpha. Arthritis research & therapy 2015; 17: 49. Epub 2015/04/11. doi: 10.1186/s13075-015-0555-z. PubMed PMID: 25860297; PubMed Central PMCID: PMCPmc4377058.

66. Beyer C, Zampetaki A, Lin N-Y, Kleyer A, Perricone C, Iagnocco A, et al. Signature of circulating microRNAs in osteoarthritis. Annals of the rheumatic diseases 2014: annrheumdis-2013-204698.

67. Kong R, Gao J, Si Y, Zhao D. Combination of circulating miR-19b-3p, miR-122-5p and miR-486-5p expressions correlates with risk and disease severity of knee osteoarthritis. American journal of translational research 2017; 9(6): 2852–64. PubMed PMID: 28670374; PubMed Central PMCID: PMCPMC5489886.

68. Cuadra VMB, González-Huerta NC, Romero-Córdoba S, Hidalgo-Miranda A, Miranda-Duarte A. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PloS one 2014; 9(6): e97690.

69. Wang H, Peng W, Ouyang X, Li W, Dai Y. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Translational research: the journal of laboratory and clinical medicine 2012;160(3):198-206. Epub 2012/06/12. doi: 10.1016/j.trsl.2012.04.002. PubMed PMID: 22683424.

70. Wang G, Tam L-S, Li EK-M, Kwan BC-H, Chow K-M, Luk CC-W, et al. Serum and Urinary Cell–free MiR-146a and MiR-155 in Patients with Systemic Lupus Erythematosus. The Journal of rheumatology 2010; 37(12): 2516-22.

71. Wang G, Tam L, Li E, Kwan B, Chow K, Luk C, et al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus 2011; 20(5): 493–500.

72. Carlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis & Rheumatism 2013; 65(5): 1324–34.

73. Navarro-Quiroz E, Pacheco-Lugo L, Navarro-Quiroz R, Lorenzi H, Espana-Puccini P, Diaz-Olmos Y, et al. Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis. PloS one. 2017; 12(11):e0187973. doi: 10.1371/journal.pone.0187973. PubMed PMID: 29136041; PubMed Central PMCID: PMCPMC5685598.

74. Sing T, Jinnin M, Yamane K, Honda N, Makino K, Kajihara I, et al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology 2012: kes120.

75. Koba S, Jinnin M, Inoue K, Nakayama W, Honda N, Makino K, et al. Expression analysis of multiple microRNAs in each patient with scleroderma. Experimental dermatology 2013; 22(7): 489–91.

76. Tanaka S, Suto A, Ikeda K, Sanayama Y, Nakagomi D, Iwamoto T, et al. Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor –. Rheumatology 2013;52(11):1963-72.

77. Chouri E, Servaas NH, Bekker CPJ, Affandi AJ, Cossu M, Hillen MR, et al. Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. Journal of autoimmunity 2018. doi: 10.1016/j.jaut.2017.12.015. PubMed PMID: 29371048.

78. Huang C, Wei J, Chang W, Chiou S, Chou C, Lin Y, et al. Higher expression of whole blood microRNA-21 in patients with ankylosing spondylitis associated with programmed cell death 4 mRNA expression and collagen cross-linked C-telopeptide concentration. The Journal of rheumatology 2014; 41(6): 1104.

79. Prajzlerova K, Grobelna K, Husakova M, Forejtova S, Jungel A, Gay S, et al. Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis. PloS one. 2017;12(9):e0185323. doi: 10.1371/journal.pone.0185323. PubMed PMID: 28938006; PubMed Central PMCID: PMCPMC5609864.

80. Perez-Sanchez C, Font-Ugalde P, Ruiz-Limon P, Lopez-Pedrera C, Castro-Villegas MC, Abalos-Aguilera MC, et al. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Human molecular genetics 2018; 27(5): 875–90. doi: 10.1093/hmg/ddy008. PubMed PMID: 29329380.

81. Misunova M, Salinas-Riester G, Luthin S, Pommerenke C, Husakova M, Zavada J, et al. Microarray analysis of circulating micro RNAs in the serum of patients with polymyositis and dermatomyositis reveals a distinct disease expression profile and is associated with disease activity. Clinical and experimental rheumatology 2016;34(1):17-24. PubMed PMID: 26574749.

82. Hirai T, Ikeda K, Tsushima H, Fujishiro M, Hayakawa K, Yoshida Y, et al. Circulating plasma microRNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis. Inflamm Regen 2018; 38: 1. doi: 10.1186/s41232-017-0058-1. PubMed PMID: 29321815; PubMed Central PMCID: PMCPMC5757292.

Labels
Dermatology & STDs Paediatric rheumatology Rheumatology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#