#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Assessment of the Biocompatibility of Dental Alloys and Alloys for Dental Amalgam. Part Second


Authors: Z. Broukal 1;  V. Fialová 1;  J. Novotný 2
Authors‘ workplace: Stomatologická klinika 1. LF UK a VFN, Praha 1;  SAFINA, a. s., Praha 2
Published in: Česká stomatologie / Praktické zubní lékařství, ročník 114, 2014, 6, s. 116-121
Category: Review Article

První část tohoto sdělění byla uveřejněna v České stomatologii 2014, č. 3, str. 53–59.

Overview

Background:
The second part of the literature review on the biocompatibility of dental alloys is focused to their possible sensibilizing effects, mutagenicity and carcinogenicity and the methods of their testing. The condition of an allergic reaction to the metal alloy is releasing its components (metal ions) by corrosion processes. From the general mechanisms of allergic reactions is well known that metal ions alone can not be allergens. However, they may play a role of haptens, where they bind to certain body molecules (proteins, nucleic acids, carbohydrates) or modified. Tests allergenic properties of metals can only be performed in vivo, in animals or humans, and commonly used patch tests are both far from the situation in the mouth, and secondly, their explanatory power is ambiguous. It is often difficult to determine whether an inflammatory reaction to the metal ions is mediated by allergic mechanism or is a toxic reaction, or combination of both mechanisms. Mutagenicity is usually tested in bacterial cultures and carcinogenicity in long-term exposure studies in laboratory animals. Direct evidence of mutagenicity and carcinogenicity of the real dental alloys are not available, however potential of some metals from dental alloys in this regard this admits. Alloys for dental amalgams have among the other dental alloys exceptional position in the evaluation of their biocompatibility,w as the usual tests address the final product, ie dental amalgam, which is produced by mixing the alloy powder with mercury under specified conditions. The vast majority of studies dealing with the corrosive properties of amalgam, its biocompatibility and methods of testing is therefore focused on the impact of mercury release. Technical standards EN ISO 10993 together with EN ISO 7405, regarding the evaluation of biocompatibility of medical devices and therefore dental alloys give a set of tests, the implementation of which should be considered before a new product is introduced into use. The results of these preclinical tests in vitro and in vivo have only limited value and can not replace long-term clinical experience.

Keywords:
dental alloys – allergy – mutagenity – carcinogenity – biocompatibility of alloys – biocompatibility testing


Sources

1. Abbrachio, M. P., Simmons-Hansen, J., Costa, M.: Cytoplasmic dissolution of phagocytized crystalline nickel sulfide particles: a prerequisite for nuclear uptake of nickel. J. Toxicol. Environ. Health, roč. 9, 1982, č. 4, s. 663–676.

2. ADA Council on Scientific Affairs. Dental Amalgam: Update on Safety Concerns. J. Am. Dent. Assoc., roč. 129, 1998, č. 4, s. 494–503.

3. Anusavice, K. J.: Phillips’ Science of Dental Materials, Philadelphia: Saunders, 2003.

4. Arrouijal, F. Z., Hildebrand, H. E., Vophi, H., Marzin, D.: Genotoxic activity of nickel subsulphide-alpha Ni3S2. Mutagenesis, roč. 5, 1990, č. 6, s. 583–589.

5. Axell, T., Spiechowicz, E., Glantz, P. O., Andersson, G., Larsson, A.: A new method for intraoral patch testing. Contact Dermatitis, roč. 15, 1986, č. 2, s. 58–62.

6. Basketter, D., Dooms-Goossens, A., Karlberg, A. T., Lepoittevin, J. R.: The chemistry of contact allergy: why is a molecule allergenic? Contact Dermatitis, roč. 32, 1995, č. 2, s. 65–73.

7. Boffetta, P., Fryzek, J. P., Mandel, J. S.: Occupational exposure to beryllium and cancer risk: a review of the epidemiologic evidence. Crit. Rev. Toxicol., roč. 42, 2012, č. 2, s. 107–118.

8. Drake, P. L., Hazelwood, K. T.: Exposure related health effects of silver and silver compounds: a review. Ann. Occup. Hyg., roč. 49, 2005, č. 7, s. 575–585.

9. European Commission, Scientific Committee on Emerging and Newly Identifiied Health Risks (SCENIHR).: The safety of dental amalgam and alternative dental restoration materials and users. Preliminary Report. May 2008; dostupné na http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_011.pdf

10. Faurschou, A., Menné, T., Johansen, J. D., Thyssen, J. P.: Metal allergen of the 21st century – a review on exposure, epidemiology and clinical manifestations of palladium allergy. Contact Dermatitis, roč. 64, 2011, č. 4, s. 185–195.

11. FDA Department of Health and Human Services, Food and Drug Administration 21 CFR Part 872 [Docket No. FDA-2008-N-0163] (formerly Docket No. 2001N-0067) RIN 0910-AG21 Dental Devices: Classification of Dental Amalgam, Reclassification of Dental Mercury, Designation of Special Controls for Dental Amalgam, Mercury, and Amalgam Alloy. http://www.fda.gov/downloads/medicaldevices/productsandmedicalprocedures/dentalproducts/ dentalamalgam/ucm174024.pdf

12. FDI Policy Statement – WHO Consensus Statement on Dental Amalgam. http://www.fdiworldental.org/media/11399/WHO-consensus-statement-on-dental-amalgam-1997.pdf

13. Goyer, R. A.: Toxic effects of metals. In: Klaassen, C. D., Amdur, M. O., Doull, J., eds. Cassarett and Doull‘s toxicology. 3rd ed. New York, Macmillan, 1986. p. 582–635.

14. Hartwig, A.: Cadmium and cancer. Met. Ions Life Sci., roč. 11, 2013, s. 491–507. doi: 10.1007/978-94-007-5179-8_15.

15. Hasséus, B., Jontell, M., Bergenholtz, G., Eklund, C., Dahlgren, U. I.: Langerhans cells from oral epithelium are more effective in stimulating allogenic t-cells in vitro than Langerhans cells from skin epithelium. J. Dent. Res., roč. 78, 1999, č. 3, s. 751–758.

16. Hensten-Pettersen, A.: Casting alloys: side effects. Adv. Dent. Res., roč. 6, 1992, č. 1, s. 38–43.

17. Klaassen, C. D., ed.: Casarett and Doull‘s toxicology. The basic science of poisons. New York: McGraw-Hill Medical Publishing Division; 2001.

18. Magaye, R., Zhao, J.: Recent progress in studies of metallic nickel and nickel-based nanoparticles‘ genotoxicity and carcinogenicity. Environ. Toxicol. Pharmacol., roč. 34, 2012, č. 3, s. 644–650.

19. Merritt, K., Brown, S. A.: Release of hexavalent chromium from corrosion of stainless steel and cobalt-chromium alloys. J. Biomed. Mater. Res., roč. 29, 1995, č. 5, s. 627–633.

20. Müller, J., Sigel, R. K., Lippert, B.: Heavy metal mutagenicity: in-sights from bioinorganic model chemistry. J. Inorg. Biochem., roč. 79, č. 1–4, s. 261–265.

21. Namikoshi, T., Yoshimatsu, T., Suga, K., Fujii, H., Yasuda, K.: The prevalence of sensitivity to constituents of dental alloys. J. Oral Rehabil., roč. 17, 1990, č. 4, s. 377–381.

22. Oiler, A. R., Costa, M., Oberdörster, G.: Carcinogenicity assessment of selected nickel compounds. Toxicol. Appl. Pharmacol., roč. 143, 1997, č. 1, s. 152–166.

23. Osborne, J. W., Berry, T. G.: Zinc-containing high copper amalgams: A 3-year clinical evaluation. Am. J. Dent., roč. 5, 1992, č. 1, s. 43–45.

24. Sarkar, N. K., Park, J. R.: Mechanism of improved resistance of zinc-containing dental amalgams. J. Dent. Res., roč. 67, 1988, č. 10, s. 1312–1315.

25. SCHER Scientific Committee on Health and Environmental Risks 2008: Opinion on the environmental risks and indirect health effects of mercury in dental amalgam. http://ec.europa.eu/health/ph_risk/committees/04_scher/docs/scher_o_089.pdf

26. Schmalz, G., Arenholt-Bindslev, D., Hiller, K. A., Schweikl, H.: Epithelium fibroblast co-culture for assessing mucosal irritancy of metals used in dentistry. Eur. J. Oral Sci., roč. 105, 1997, č. 1, s. 85–91.

27. Schmalz, G., Schuster, U., Schweikl, H.: Influence of metals on IL-6 release in vitro. Biomaterials, roč. 19, 1998, č. 18, s. 1689–1694. (c)

28. Silvennoinen-Kasinen, S., Ikuaheimo, I., Tuiilidainen, A.: TAP1 and TAP2 genes in nickel allergy. Int. Arch. Allergy Immunol., roč. 114, 1997, č. 1, s. 94–96.

29. Sunderman, F. W., ed.: Nickel in the human environment. Publication 53. Lyon: International Agency for Research on Cancer (IARC); 1984. p. 3–485.

30. Tennant, R. W., Margolin, B. H., Shelby, M. D., Zeiger, E., Haseman, J. K., Spalding, J. E., et al.: Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science, roč. 236, 1987, č. 4804, s. 933–941.

31. Todd, D. J., Burrows, D.: Patch testing with pure palladium metal in patients with sensitivity to palladium chloride. Contact Dermatitis, roč. 26, 1992, č. 5, s. 327–331.

32. Uçar, Y., Brantley, W. A.: Biocompatibility of dental amalgams. Int. J. Dent., roč. 2011, 2011, 981595 doi: 10.1155/2011/981595.

33. van der Valk, P. G., Devos, S. A., Coenraads, P. J.: Evidence-based dignosis in patch testing. Contact Dermatitis., roč. 48, 2003, č. 3, s. 121–125.

34. Vreeburg, K. J., van Hoogstraten, I. M., von Biomberg, B. M., de Groot, K., Scheper, R. J.: Oral induction of immunological tolerance to chromium in the guinea pig. J. Dent. Res., roč. 69, 1990, č. 10, s. 1634–1639.

35. Wahlberg, J. E., Boman, A. S.: Cross reactivity to palladium and nickel studied in the guinea pig. Acta Derm. Venereol., roč. 72, 1992, č. 2, s. 95–97.

36. Wataha, J. C., Ratanasathien, S., Hanks, C. T., Sun, Z.: In vitro IL-1 beta and TNFalpha release from THP-1 monocytes in response to metal ions. Dent. Mater., roč. 12, 1996, č. 6, s. 322–327.(a)

37. Wataha, J. C., Hanks, C. T.: Biological effects of palladium and risk of using palladium in dental casting alloys. J. Oral Rehabil., roč. 23, 1996, č. 5, s. 309–320.

38. WHO 2004 – Inorganic tin in drinking water. http://www.who.int/water_sanitation_health/dwq/chemicals/tin.pdf

39. Youdelis WV. Effect of indium on residual mercury content and compressive strength of amalgam. Dent. J., roč. 45, 1979, č. 2, s. 60–62.

Labels
Maxillofacial surgery Orthodontics Dental medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#