#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Effect of Surface Treatment on Composite Repair Bond Strength Longevity


Authors: L. Comba;  P. Bradna;  M. Dudek;  V. Fialová;  J. Dušková;  D. Houšová
Authors‘ workplace: Ústav klinické a experimentální stomatologie 1. LF UK a VFN, Praha
Published in: Česká stomatologie / Praktické zubní lékařství, ročník 112, 2012, 2, s. 36-46
Category: Original Article – Experimental Study

Overview

Introduction:
Composite restorations undergo degradation in the oral cavity, which may compromise their aesthetic and functional properties, cause failure of marginal integrity, increased abrasion or even partial fracture of the filling. Instead of complete removal of such restorations, they can be repaired.

Aim:
To study the bond strength of a new composite resin to an aged composite substrate after a 4-month storage in distilled water or sodium laurylsulphate solution (SLS). Two various surface treatments and two different adhesive systems were tested.

Materials and methods:
Light cured specimens of a micro-hybrid composite (Filtek Z250, shade A2) were aged in distilled water (37 °C) for 5 months. Composite surface was prepared either by grinding (SiC paper P320, mean grain size 46 µm, equivalent to red diamond bur) or by air abrasion (Rondoflex; Al2O3 50 µm; 3.2 bar; 60 s). Composite build-ups were made from the same composite material using two adhesive systems (Optibond FL, Gluma Comfort Bond). The microtensile bond strength (n = 13–16) was measured after a 4-month storage of specimens at 37 °C in distilled water or in a solution of sodium lauryl sulfate (1.5 wt. %). Control specimens were stored in distilled water for 24 hours (37 °C).

Results:
A decrease of the bond strength compared to the control group on the ground surface after the 4-month storage in distilled water or SLS was found to be adhesive system- dependant. The bond strength for Optibond FL decreased by 52% in SLS only (p < 0.001), but for Gluma Comfort Bond it decreased by 45% in distilled water (p < 0.001) and by 61% in SLS (p < 0,001). On the air-abraded surface the bond strength decreased only for Optibond FL in SLS (p < 0.01), by 31%.

Conclusion:
Long-term durability of composite repair can be maintained by preparing the original composite surface using air abrasion. The effect of the adhesive system on the bond strength was not significant.

Key words:
bond strength – adhesion – composite repair – sodium laurylsulphate – air abrasion


Sources

1. Bonstein, T., Garlapo, D., Donarummo, J. Jr., et al.: Evaluation of varied repair protocols applied to aged composite resin. J. Adhes. Dent., roč. 7, 2005, č. 1, s. 41–49.

2. Bowen, R. L. Dental filling materials comprising vinyl-silane treated fused silica and a binder consisting of the reaction product of bisphenol and glycidyl methacrylate. US Patent 3,066,112, 1962.

3. Bradna, P., Vrbova, R., Dudek, M., et al.: Comparison of bonding performance of self-etching and etch-and-rinse adhesives on human dentin using reliability analysis. J. Adhes. Dent., roč. 10, 2008, č. 6, s. 423–429.

4. Brendeke, J., Ozcan, M.: Effect of physicochemical aging conditions on the composite-composite repair bond strength. J. Adhes. Dent., roč. 9, 2007, č. 4, s. 399–406.

5. Brunthaler, A., Konig, F., Lucas, T., et al.: Longevity of direct resin composite restorations in posterior teeth. Clin. Oral Investig., roč. 7, 2003, č. 2, s. 63–70.

6. Buonocore, M. G.: A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J. Dent. Res., roč. 34, 1955, č. 6, s. 849–853.

7. Cavalcanti, A. N., De Lima, A. F., Peris, A. R. et al.: Effect of surface treatments and bonding agents on the bond strength of repaired composites. J. Esthet. Restor. Dent., roč. 19, 2007, č. 2, s. 90–98; discussion 99.

8. Dall’Oca, S., Papacchini, F., Goracci, C., et al.: Effect of oxygen inhibition on composite repair strength over time. J. Biomed. Mater. Res. B Appl. Biomater., roč. 81, 2007, č. 2, s. 493–498.

9. Fawzy, A. S., El-Askary, F. S., Amer, M. A.: Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite. J. Dent., roč. 36, 2008, č. 12, s. 969–976.

10. Ferracane, J. L., Berge, H. X., Condon, J. R.: In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res., roč. 42, 1998, č. 3, s. 465–472.

11. Ferracane, J. L., Marker, V. A.: Solvent degradation and reduced fracture toughness in aged composites. J. Dent. Res., roč. 71, 1992, č. 1, s. 13–19.

12. Gordan, V. V., Shen, C., Riley, J., 3rd, et al.: Two-year clinical evaluation of repair versus replacement of composite restorations. J. Esthet. Restor. Dent., roč. 18, 2006, č. 3, s. 144–153; discussion 154.

13. Hannig, C., Laubach, S., Hahn, P., et al.: Shear bond strength of repaired adhesive filling materials using different repair procedures. J. Adhes. Dent., roč. 8, 2006, č. 1, s. 35–40.

14. Krejci, I., Lieber, C. M., Lutz, F.: Time required to remove totally bonded tooth-colored posterior restorations and related tooth substance loss. Dent. Mater., roč. 11, 1995, č. 1, s. 34–40.

15. Li, J.: Effects of surface properties on bond strength between layers of newly cured dental composites. J. Oral. Rehabil., roč. 24, 1997, č. 5, s. 358–360.

16. Mitsaki-Matsou, H., Karanika-Kouma, A., Papadoyiannis, Y., et al.: An in vitro study of the tensile strength of composite resins repaired with the same or another composite resin. Quintessence Int., roč. 22, 1991, č. 6, s. 475–481.

17. Moncada, G., Martin, J., Fernandez, E., et al.: Sealing, refurbishment and repair of Class I and Class II defective restorations: a three-year clinical trial. J. Am. Dent. Assoc., roč. 140, 2009, č. 4, s. 425–432.

18. Papacchini, F., Radovic, I., Magni, E., et al.: Flowable composites as intermediate agents without adhesive application in resin composite repair. Am. J. Dent., roč. 21, 2008, č. 1, s. 53–58.

19. Pashley, D. H., Carvalho, R. M., Sano, H., et al.: The microtensile bond test: a review. J. Adhes. Dent., roč. 1, 1999, č. 4, s. 299–309.

20. Pontes, A. P., Oshima, H. M., Pacheco, J. F., et al.: Shear bond strength of direct composite repairs in indirect composite systems. Gen. Dent., roč. 53, 2005, č. 5, s. 343–347.

21. Raj, V., Macedo, G. V., Ritter, A. V.: Longevity of posterior composite restorations. J. Esthet. Restor. Dent., roč. 19, 2007, č. 1, s. 3–5.

22. Rathke, A., Tymina, Y., Haller, B.: Effect of different surface treatments on the composite-composite repair bond strength. Clin. Oral. Investig., roč. 13, 2009, č. 3, s. 317–323.

23. Rinastiti, M., Ozcan, M., Siswomihardjo, W., et al.: Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments. J. Dent., 2009.

24. Rodrigues, S. A., Jr., Ferracane, J. L., Della Bona, A.: Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dent. Mater., roč. 25, 2009, č. 4, s. 442–451.

25. Shin, M. A., Drummond, J. L.: Evaluation of chemical and mechanical properties of dental composites. J. Biomed. Mater. Res., roč. 48, 1999, č. 4, s. 540–545.

26. Soderholm, K. J., Mukherjee, R., Longmate, J.: Filler leachability of composites stored in distilled water or artificial saliva. J. Dent. Res., roč. 75, 1996, č. 9, s. 1692–1699.

27. Soderholm, K. J., Roberts, M. J.: Variables influencing the repair strength of dental composites. Scand. J. Dent. Res., roč. 99, 1991, č. 2, s. 173–180.

28. Souza, E. M., Francischone, C. E., Powers, J. M., et al.: Effect of different surface treatments on the repair bond strength of indirect composites. Am. J. Dent., roč. 21, 2008, č. 2, s. 93–96.

29. Teixeira, E. C., Bayne, S. C., Thompson, J. Y., et al.: Shear bond strength of self-etching bonding systems in combination with various composites used for repairing aged composites. J. Adhes. Dent., roč. 7, 2005, č. 2, s. 159–164.

30. Tezvergil, A., Lassila, L. V.Vallittu, P. K.: Composite-composite repair bond strength: effect of different adhesion primers. J. Dent., roč. 31, 2003, č. 8, s. 521–525.

31. Tezvergil, A., Lassila, L. V., Yli-Urpo, A., et al.: Repair bond strength of restorative resin composite applied to fiber-reinforced composite substrate. Acta Odontol. Scand., roč. 62, 2004, č. 1, s. 51–60.

32. Yesilyurt, C., Kusgoz, A., Bayram, M., et al.: Initial repair bond strength of a nano-filled hybrid resin: effect of surface treatments and bonding agents. J. Esthet. Restor. Dent., roč. 21, 2009, č. 4, s. 251–260.

33. Zhou, M., Drummond, J. L., Hanley, L.: Barium and strontium leaching from aged glass particle/resin matrix dental composites. Dent. Mater., roč. 21, 2005, č. 2, s. 145–155.

Labels
Maxillofacial surgery Orthodontics Dental medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#