#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Anti-inflammatory potential of composites of yeast glucan particles and geranylated flavonoid diplacone


Authors: Lucie Černá 1,2;  Zuzana Ba O 1;  Petra Šalamúnová 4;  Karel Šmejkal 1,3;  Jaroslav Hanuš 4;  Jan Hošek 2
Authors‘ workplace: Farmaceutická fakulta, Masarykova univerzita, Brno 1;  Přírodovědecká fakulta, Univerzita Palackého, Oddělení biologicky aktivních komplexů a molekulových magnetů, Regionální centrum pokročilých technologií a materiálů 2;  Univerzita veterinárskeho lekárstva a farmácie, Katedra farmakognózie a botaniky, Košice, SR 3;  Vysoká škola chemicko-technologická, Praha, Ústav chemického inženýrství, Fakulta chemicko-inženýrsk 4
Published in: Čes. slov. Farm., 2020; 69, 130-136
Category: Original Articles

Overview

Geranylated flavanone diplacone is a flavanone iso- lated from Paulownia tomentosa (Thunb.) Steud. (Paulowniaceae) with anti-inflammatory and antioxidant properties, nevertheless showing high lipophilicity and low solubility in water. Diplacone was therefore used as a model molecule for incorporation into glucan particles (GPs). GPs are prepared by intensive washing of yeast (Saccharomyces cerevisiae) leading to hollow shells consisting of β-(1→3)/β-(1→6) glucan mainly. The aim of this study was to compare anti-inflammatory potential of GPs-diplacone composites with the compound itself, GPs themselves and the physical mixture of GPs and diplacone. The cell line THP1-XBlueTM-MD2-CD14 derived from human leukemic monocytes was stimulated with lipopolysaccharide (LPS) from Escherichia coli to trigger inflammatory reaction. The composites of GPs with diplacone significantly decreased the activity of pro-inflammatory transcription factors nuclear factor κB (NF-κB) and activator protein 1 (AP-1).

Keywords:

AP-1 – diplacone – encapsulation – glucan particles – NF-κB – inflammation


Sources

    1.  Hodnocení vývoje dodávek léčivých přípravků podle ATC skupin. Státní ústav pro kontrolu léčiv. http://www.sukl.cz/dodavky-leciv-v-ceske-republice-v-1-ctvrtleti-roku-2019 (14. 10. 2019).

    2.  Hodnocení vývoje dodávek léčivých přípravků podle ATC skupin. Státní ústav pro kontrolu léčiv. http://www.sukl.cz/informace-o-distribuci-leciv-lekarnam-jinym-zdravotnickym-22 (17. 10. 2019).

    3.  Sak K., Everaus H. Nanotechnological approach to improve the bioavailability of dietary flavonoids with chemopreventive and anticancer properties. Nutraceuticals 2016; 4, 427–479.

    4.  Akramienė D., Kondrotas A., Didžiapetrienė J. Effects of β-glucans on the immune system. Medicina (Kaunas) 2007; 43(8), 597–606.

    5.  Wang S., Zhou H., Feng T., Wu R., Sun X., Guan N., Qu L., Gao Z., Yan J., Xu N., Zhao J., Qi C. β-Glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway. Nutr. Metab. Cardiovasc. Dis. 2014; 24(3), 248–255.

    6.  Shen R. L., Cai F. L., Dong J. L., Hu X. Z. Hypoglycemic effects and biochemical mechanisms of oat products on streptozotocin-induced diabetic mice. J. Agric. Food Chem. 2011; 59(16), 8895–8900.

    7.  Aimanianda V., Clavaud C., Simenel C., Fontaine T., Delepier-re T., Latgé J. P. Cell wall β-(1,6)-glucan of Saccharomyces cerevisiae. Structural characterization and in situ synthesis. J. Biol. Chem. 2009; 284(20), 13401–13412.

    8.  Ishimoto Y., Ishibashi K., Yamanaka D., Adachi Y., Kanzaki K., Okita K., Iwakura Y., Ohno N. Modulation of an innate immune response by soluble yeast β-glucan prepared by a heat degradation method. Int. J. Biol. Macromol. 2017; 104, 367–376.

    9.  Volman J. J., Ramakers J. D., Plat J. Dietary modulation of immune function by β-glucans. Physiol. Behav. 2008; 94(2), 276–284.

  10.  Soto E. R., Caras A. C., Kut L. C., Castle M. K., Ostroff G. R. Glucan particles for macrophage targeted delivery of nanoparticles. J. Drug Deliv. 2012; 2012, 1–13.

  11.  Lesage, G., Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2006; 70(2), 317–343.

  12.  Waszkiewicz-Robak, B. Spent Brewer’s Yeast and beta-glucans isolated from them as diet components modifying blood lipid metabolism disturbed by an atherogenic diet. Lipid Metabolism 2013; Rodrigo Valenzuela Baez, IntechOpen, https://www.intechopen.com/books/lipid-metabolism/spent-brewer-s-yeast-and-beta-glucans-isolated-from-them-as-diet-components-modifying-blood-lipid-me (5. 6. 2020).

  13.  Aouadi M., Wang M., Chouinard M., Soto E., Ostroff G. R., Czech M. P., Nicoloro S. M., Tesz G. J. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009; 458(7242), 1180–1184.

  14.  Plavcová Z., Šalamúnová P., Saloň P., Štěpánek F., Hanuš J., Hošek J. Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. Int. J. Pharm. 2019; 568, 118532.

  15.  Chen S., Wang J., Cheng H., Guo W., Yu M., Zhao Q., Wu Z., Zhao L., Yin Z., Hong Z. Targeted delivery of NK007 to macrophages to treat colitis. J. Pharm. Sci. 2015; 104(7), 2276–2284.

  16.  Hošek J., Závalová V., Šmejkal K., Bartoš M. Effect of Diplacone on LPS-Induced Inflammatory Gene Expression in Macrophages. Folia Biologica 2010; 56, 124–130.

  17.  Zima A., Hošek J., Treml J., Muselík J., Suchý P., Pražanová G., Lopes A., Žemlička M. Antiradical and cytoprotective activities of several c-geranyl-substituted flavanones from Paulownia tomentosa Fruit. Molecules 2010; 15(9), 6035–6049.

  18.  Vochyánová Z., Bartošová L., Bujdáková V., Fictum P., Husník R., Suchý P., Šmejkal K., Hošek J. Diplacone and mimulone ameliorate dextran sulfate sodium-induced colitis in rats. Fitoterapia 2015; 101, 201–207.

  19.  Tak P. P., Firestein G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Investig. 2001; 107(1), 7–11.

  20.  Fujioka S., Niu J., Schmidt Ch., Sclabas G. M., Peng B., Uwagawa T., Li Z., Evans D. B., Abbruzzese J. L., Chiao P. J. NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol. Cell. Biol. 2004; 24(17), 7806–7819.

  21.  Saloň I. Hanuš J., Ulbrich P., Štěpánek F. Suspension stability and diffusion properties of yeast glucan microparticles. Food Bioprod. Process. 2016; 99, 128–135.

  22.  Šmejkal K., Grycová L., Marek R., Lemiere F., Jankovská D., Forejtníková H., Vančo J., Suchý V. C-Geranyl compounds from Paulownia tomentosa fruits. J. Nat. Prod. 2007; 70(8), 1244–1248.

  23.  Hošek J., Toniolo A., Neuwirth O., Bolego Ch. Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. J. Nat. Prod. 2013; 76(9), 1586−1591.

  24.  Sun Y., Shi X., Zheng X., Nie S., Xu X. Inhibition of dextran sodium sulfate-induced colitis in mice by baker’s yeast polysaccharides. Carbohydr. Polym. 2019; 207, 371–338.

  25.  Fusté N. P., Guasch M., Guillen P., Anerillas C., Cemeli T., Pedraza N., Ferrezuelo F., Encinas M., Moralejo M., Garí E. Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydr. Polym. 2019; 210, 389–398.

  26.  Medina-Gali R. M., Ortega-Villaizan M., Mercado L., Novoa B., Coll J., Perez L. Beta-glucan enhances the response to SVCV infection in zebrafish. Dev. Comp. Immunol. 2018; 84, 307–314.

  27.  Soto E. R., Ostroff G. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA Delivery. Bioconjugate Chem. 2008; 19(4), 840–848.

  28.  Soto E., Kim Y. S., Lee J., Kornfeld H., Ostroff G. Glucan particle encapsulated rifampicin for targeted delivery to macrophages. Polymers 2010; 2(4), 681–689.

  29.  Esfanjania A. F., Jafari S. M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B 2016; 146, 532–543.

  30.  Jayachandran M., Chen J., Chung S. S. M., Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J. Nutr. Biochem. 2018; 61, 101–110.

  31.  Xu X., Yasuda M., Mizuno M., Ashida H. β-Glucan from Saccharomyces cerevisiae reduces lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Biochim. Biophys. Acta 2012; 1820(10), 1656–1663.

Labels
Pharmacy Clinical pharmacology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#