#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dynamic Vitreomacular Traction


Authors: P. Cigánek 1;  L. Matoušková 1;  B. Kousal 2,3
Authors‘ workplace: Oční oddělení, Středomoravská nemocniční, a. s., – odštěpný závod Nemocnice, Prostějov, primář MUDr. Petr Frgál 1;  Oční klinika, 1. lékařská fakulta, Univerzita Karlova v Praze a Všeobecná fakultní nemocnice, Praha, přednostka doc. MUDr. Bohdana Kalvodová, CSc. 2;  Laboratoř biologie a patologie oka, Ústav dědičných metabolických poruch, 1. lékařská fakulta, Univerzita Karlova v Praze a Všeobecná fakultní nemocnice, Praha, přednosta prof. MUDr. Viktor Kožich, CSc. 3
Published in: Čes. a slov. Oftal., 71, 2015, No. 1, p. 23-28
Category: Original Article

Overview

Purpose:
To describe clinical findings in patient with dynamic changes of vitreomacular interface and retina. To provide summary of findings about mechanism of accommodation and its potential impact on vitreous and retina.

Methods:
In 57 year old patient we performed comprehensive ophtalmological examination including spectral domain optical coherent tomography (SD-OCT). We observed the impact of accommodative effort, head-downward position, combination of accommodative effort and head-downward position and influence of light reflex on vitreomacular interface and retina and change of minimal foveal thickness.

Results:
On SD-OCT we could observe vitreofoveal adhesion on both eyes. During accommodative effort in combination with head-downward position we could observe symptomatic dynamic vitreomacular traction with temporary elevation of minimal foveal thickness. We could not observe impact of only head-downward posture, reading with spectacle correction of presbyopia or light reflex on change of vitreomacular interface or retina.

Conclusion:
We should suspect dynamic changes of vitreomacular interface and retina when we see fluctuating impairment of central visual acuity particularly when it is in connection with accommodation and head-downward posture.

Key words:
accommodation, head-downward position, vitreomacular interface, SD-OCT


Sources

1. Atchison, D.A., Claydon, C.A., Irwin, S.E.: Amplitude of accommodation for different head positions and different directions of eye gaze. Optom Vis Sci, 71(5); 1994: 339–345.

2. Bolz, M., Prinz, A., Drexler, W., et al.: Linear relationship of refractive and biometric lenticular changes during accommodation in emmetropic and myopic eyes. Br J Ophthalmol, 91(3); 2007: 360–365.

3. Croft, M.A., Nork, T.M., McDonald, J.P., et al.: Accommodative movements of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes. Invest Ophthalmol Vis Sci, 54(7); 2013: 5049–5058.

4. Dubbelman, M., van der Heijde, GL., Weeber, HA.: Change in shape of the aging human crystalline lens with accommodation. Vision Res, 45(1); 2005: 117–132.

5. Fincham, EF.: The mechanism of accommodation. Br J Ophthalmol, 21(Monograph Suppl VIII); 1937: 5–80.

6. Gallemore, R.P., Jumper, J.M., McCuen, B.W. 2nd, et al.: Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina, 20(2); 2000: 115–120.

7. Girach, A., Pakola, S.: Vitreomacular interface diseases: pathophysiology, diagnosis and future treatment options. Expert Rev Ophthalmol, 7(4); 2012: 311–323.

8. Glasser, A., Wendt, M., Ostrin, L.: Accommodative changes in lens diameter in rhesus monkeys. Invest Ophthalmol Vis Sci, 47(1); 2006: 278–286.

9. Glasser, A.: Restoration of accommodation: surgical options for correction of presbyopia. Clin Exp Optom, 91(3); 2008: 279–295.

10. Goldberg, D.B.: Computer-animated model of accommodation and theory of reciprocal zonular action. Clin Ophthalmol, 5; 2011: 1559–1566.

11. Helmholtz, H.: Treatise on physiological optics, Volume III. New York, Dover Publications, 1962, 734 p.

12. Heron, G., Charman, WN., Schor, C.: Dynamics of the accommodation response to abrupt changes in target vergence as a function of age. Vision Res, 41(4); 2001: 507–519.

13. Hess, C.: Arbeiten aus dem gebiete der Akommodationsiehr. Graefes Arch Ophthalmol, 47; 1996/1897: 43.

14. Johnson, M.W.: Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol, 149(3); 2010, 371–382.

15. Kasthurirangan, S., Markwell, E.L., Atchison, D.A. et al.: MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis, 11(3); 2011: 1–16.

16. Knudsen, V.M., Kozak, I.: A retrospective study of a single practice use of ocriplasmin in the treatment of vitreomacular traction. Saudi J Ophthalmol, 28(2); 2014: 139–44.

17. Koerner, F., Garweg, J.: Diseases of the vitreo-macular interface. Klin Monbl Augenheilkd, 214(5); 1999: 305–310.

18. Koke, M.P.: Mechanism of accommodation. Arch Ophthalmol, 27(5); 1942: 950–968.

19. Kuchynka, P. et al.: Oční lékařství. Praha, Grada Publishing a.s., 2007, 768 s.

20. Luedde, W.H.: Hensen and Voelckers’s experiments on the mechanism of accommodation: an interpretation. Trans Am Ophthalmol Soc, 25; 1927: 250–267.

21. Marg, E., Morgan, M.W. Jr.: Further investigation of the pupillary near reflex; the effect of accommodation, fusional convergence and the proximity factor on pupillary diameter. Am J Optom Arch Am Acad Optom, 27(5); 1950: 217–225.

22. Mellington, F.E., Benjamin, L.: Symptomatic dynamic vitreomacular traction during accommodation and head-down posture preceding definitive vitreomacular traction syndrome. Retinal Cases & Brief Reports, 4(3); 2009: 270–273.

23. Mitry, D., Fleck, B.W., Wright, A.F. et al.: Pathogenesis of rhegmatogenous retinal detachment: predisposing anatomy and cell biology. Retina, 30(10); 2010: 1561–1572.

24. Ostrin, L., Kasthurirangan, S., Win-Hall, D. et al.: Simultaneous measurements of refraction and A-scan biometry during accommodation in humans. Optom Vis Sci, 83(9); 2006: 657–665.

25. Otradovec, J.: Klinická neurooftalmologie. Praha, Grada Publishing, 2003, 488 s.

26. Poyer, JF., Kaufman, PL., Flugel, C.: Age does not affect contractile responses of the isolated rhesus monkey ciliary muscle to muscarinic agonists. Curr Eye Res, 12(5); 1993: 413–422.

27. Rosales, P., Dubbelman, M., Marcos, S., et al.: Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J Vis, 6(10); 2006: 1057–1067.

28. Schepens, C.L., Neetens, A.: The vitreous and vitreoretinal interface. New York, Springer-Verlag, 1987, 20 p.

29. Steel, D.H.W., Lotery, A.J.: Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye, 27; 2013 , S1–S21.

30. Strenk, S.A., Semmlow, J.L., Strenk, L.M., et al.: Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci, 40(6); 1999: 1162–1169.

31. Strenk, SA., Strenk, LM., Guo, S.: Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters. J Cataract Refract Surg, 32(11); 2006: 1792–1798.

32. Suzuki, H.: Observations on the intraocular changes associated with accommodation: an experimental study using radiographic technique. Exp Eye Res, 17(2); 1973: 119–128.

33. Wilson, RS.: Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infrared retro-illumination video photography and pixel unit measurements. Trans Am Ophthalmol Soc, 95; 1997: 261–267.

Labels
Ophthalmology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#