The Cur­rent View of Im­munopathogenesis of Myasthenia Gravis


Authors: M. Jakubíková 1;  J. Piťha 1,2
Authors‘ workplace: Neurologická klinika a Centrum klinických neurověd, 1. LF UK a VFN v Praze 1;  MS Centrum Teplice, Neurologické oddělení, Krajská zdravotní, a. s. – Nemocnice Teplice o. z. 2
Published in: Cesk Slov Neurol N 2015; 78/111(6): 649-654
Category: Review Article

Overview

Myasthenia gravis (MG) is an autoimmune disease that results in failure of neuromuscular transmission. Earlier theories of the dominant role of pathologic autoantibodies against target antigens (nicotinic acetylcholine receptor, muscle-specific tyrosine kinase and low-density lipoprotein receptor) were corrected following discovery of immune dysregulation at the level of T cells – between Th1 and Th2 and/or between T regulatory cells and Th17 cells, proliferation of CD8+ lymphocytes, chemokines, cytokines and other molecules. The immune system dysfunction can occur at different levels of the immune response: helper CD4+ T cells, cytotoxic CD8+ T cells, regulatory CD4+CD25+ T lymphocytes, Th17 lymphocytes, B lymphocytes and plasma cells. Thymus plays a dominant immunopathogenetic role in younger patients with MG, while extrathymic mechanisms are applied in older patients. Different immunologic mechanisms play a role in MG associated with a thymoma.

Key words:
myasthenia gravis – thymus – autoantibodies – T lymphocytes – B lymphocytes – cytokines

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Ber­rih‑ Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of im­mune dysregulation and etiological mechanisms. J Autoim­mun 2014; 52: 90– 100. doi: 10.1016/ j.jaut.2013.12.011.

2. Marx A, Wilisch A, Schultz A, Gattenlöhner S, Nen­ninger R, Mül­ler‑ Hermelink HK. Pathogenesis of myasthenia gravis. Virchows Arch 1997; 430(5): 355– 364.

3. Kaminski HJ, Ruf­f RL. Structure and kinetic properties of the acetylcholine receptor. In: Engel AG (ed.) Myasthenia gravis and myasthenic disorders. Oxford: University Pres­s 1999: 40– 64.

4. Kuks JBM. The thymus and myasthenia gravis. Doctoral thesis. Groningen: University of Groningen 1992.

5. Emilie D, Crevon MC, Cohen‑ Kaminski S, Peuchmaur M, Devergne O, Ber­rih‑ Aknin S et al. In situ production of interleukins in hyperplastic thymus from myasthenia gravis patients. Hum Pathol 1991; 22(5): 461– 468.

6. Lauriola L, Ranel­letti F, Maggiano N, Guer­riero M, Punzi C, Marsili F et al. Thymus changes in anti‑MUSK‑ positive and - negative myasthenia gravis. Neurology 2005; 64(3): 536– 538.

7. Špalek P. Myastenia gravis –  autoimunitné spektrum a imunopatogenetická klasifikácia. Neurologia 2009; 4: 25– 30.

8. Ströbel P, Chuang WY, Marx A. Thymoma‑as­sociated paraneoplastic myasthenia gravis. In: Kaminski HJ (ed.). Myasthenia gravis and related disorders. New York: Humana Pres­s 2009: 105– 117.

9. Špalek P, Schnor­rer M, Krajč T. Imunopatogenéza paraneoplastickej myastenie gravis asociovanej s tymómom. Neurologia 2010; 5: 7– 11.

10. Ströbel P, Helmreich M, Menioudakis G, Lewin SR, Rüdiger T, Bauer A et al. Paraneoplastic myasthenia gravis cor­relates with generation of mature naive CD4(+) T cel­ls in thymomas. Blood 2002; 100(1): 159– 166.

11. Marx A, Hohenberger P, Pfan­nschmidt J, Wiebe K, Wil­lcox N, Stro P. The autoim­mune regulator AIRE in thy-moma biology: autoim­munity and beyond. J ThoracOncol 2010; 5 (Suppl 4): S266– S272. doi: 10.1097/ JTO.0b013e3181f1f63f.

12. Motomura M, Narita Masuda T. Autoantibodies in myasthenia gravis. Brain Nerve 2013; 65(4): 433– 439.

13. Engel AG, Fumagal­li G. Mechanisms of acetylcholine receptor los­s from the neuromuscular junction. Ciba Found Symp 1982; 90: 197– 224.

14. Dau PC. Plasmapheresis therapy in myasthenia gravis. Muscle Nerve 1980; 3(6): 468– 482.

15. Limburg PC, The TH, Hum­mel‑ Tappel E, Oosterhuis HJ. Anti‑acetylcholine receptor antibodies in myasthenia gravis. Part 1. Relation to clinical parameters in 250 patients. J Neurol Sci 1983; 58(3): 357– 370.

16. Špalek P. Tymómy a paraneoplastická autoimunita. Cesk Slov Neurol N 2002; 65/ 98(3): 367– 373.

17. Seybold ME, Lindstrom JM. Patterns of acetylcholine receptor antibody in myasthenia gravis. An­n N Y Acad Sci 1981; 377: 292– 306.

18. Conti‑Fine BM, Diethelm‑ Okita B, Ostlie N. Imunopathogenesis of myasthenia gravis. In: Kaminski HJ (ed.). Myasthenia gravis and related disorders. New York, Humana Pres­s 2009: 43– 70.

19. Hoch W, McConvil­le J, Helms S, Newsom‑ Davis J, Melms A, Vincent A. Autoantibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis with­out acetylcholine receptor antibodies. Nat Med 2001; 7(3): 365– 368.

20. Weatherbee SD, Anderson KV, Niswander LA. LDL‑receptor‑related protein 4 is crucial for formation of the neuromuscular junction. Development 2006; 133(24): 4993– 5000.

21. Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A, Schalke B et al. Anti‑LRP4 autoantibodies in AChR‑  and MuSK‑ antibody‑ negative myasthenia gravis. J Neurol 2012; 259(3): 427– 435. doi: 10.1007/ s00415‑ 011‑ 6194‑ 7.

22. Gomez AM, Burden SJ. The extracel­lular region of Lrp4 is suf­ficient to mediate neuromuscular synapse formation. Dev Dyn 2011; 240(12): 2626– 2633. doi: 10.1002/ dvdy.22772.

23. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. LRP4 Serves as a coreceptor of agrin. Neuron 2008; 60(2): 285– 297. doi: 10.1016/ j.neuron.2008.10.006.

24. Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R et al. A comprehensive anal­ysis of the epidemiology and clinical characteristics of anti‑LRP4 in myasthenia gravis. J Autoim­mun 2014; 52: 139– 145. doi: 10.1016/ j.jaut.2013.12.004.

25. Romi F, Skeie GO, Gilhus NE, Aarli JA. Striational antibodies in myasthenia gravis: reactivity and pos­sible clinical significance. Arch Neurol 2005; 62(3): 442– 446.

26. Lindstrom J, Shelton D, Fujii Y. Myasthenia gravis. Adv Im­munol 1988; 42: 233– 284.

27. Harcourt GC, Som­mer N, Rothbard J, Wil­lcox HN, Newsom‑ Davis J. A juxta‑ membrane epitope on the human acetylcholine receptor recognized by T cel­ls in myasthenia gravis. J Clin Invest 1988; 82(4): 1295– 1300.

28. Melms A, Schalke BCG, Kirchner T, Mül­ler‑ Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis: isolation of T‑lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 1988; 81: 902– 908.

29. Ahlberg R, Yi Q, Pirskanen R, Matel­l G, Swe-rup C, Rieber EP et al. Treatment of myasthenia gravis with anti‑CD4 antibody: improvement cor­relates to decreased T cel­l autoreactivity. Neurology 1994; 44(9): 1732– 1737.

30. Wang ZY. Myasthenia in SCID mice grafted with myasthenic patient lymphocytes: role of CD4+ and CD8+ cel­ls. Neurology 1999; 52(3): 484– 497.

31. Beis­sert S, Schwarz A, Schwarz T. Regulatory T cel­ls. J Invest Dermatol 2006; 126(1): 15– 24.

32. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cel­ls and im­mune tolerance. Cel­l 2008; 133(5): 775– 787. doi: 10.1016/ j.cel­l.2008.05.009.

33. Viglietta V, Baecher‑ Al­lan C, Weiner HL, Hafler DA. Los­s of functional suppres­sion by CD4+CD25+ regulatory T cel­ls in patients with multiple sclerosis. J Exp Med 2004; 199(7): 971– 979.

34. Bystry RS, Aluvihare V, Welch KA, Kal­likourdis M, Betz AG. B cel­ls and profes­sional APCs recruit regulatory T cel­ls via CCL4. Nat Im­munol 2001; 2(12): 1126– 1132.

35. Shevach EM. CD4+CD25+ suppres­sor T cel­ls: more questions than answers. Nat Rev Im­munol 2002; 2(6): 389– 400.

36. Aricha R, Feferman T, Fuchs S, Souroijon MC. Ex vivo regulatory T cel­ls modelate experimental myasthenia gravis. J Im­munol 2005; 175(12): 7898– 7904.

37. Gertel‑ Lapter S, Mizrachi K, Ber­rih‑ Aknin S, Fuchs S, Souroujon MC. Impairment of regulatory T cel­ls in myasthenia gravis: studies in an experimental model. Autoim­mun Rev 2013; 12(9): 894– 903. doi: 10.1016/ j.autrev.2013.03.009.

38. Balandina A, Lécart S, Dartevel­le P, Saoudi A, Ber­rih‑ Aknin S. Functional defect of regulatory CD4(+)CD25+ T cel­ls in the thymus of patients with autoim­mune myasthenia gravis. Blood 2005; 105(2): 735– 741.

39. Sun Y, Qiao J, Lu CZ, Zhao CB, Zhu XM, Xiao BG. Increase of circulat­ing CD4+CD25+ T cel­ls in myasthenia gravis patients with stability and thymectomy. Clin Im­munol 2004; 112(3): 284– 289.

40. Zhang GX, Xiao BG, Bakhiet M, van der Meide P, Wig­zel­l H, Link H et al. Both CD4+ and CD8+ T cel­ls are es­sential to induce experimental autoim­mune myasthenia gravis. J Exp Med 1996; 184(2): 349– 356.

41. Lisak RP, Laramore C, Zweiman B, Moskovitz A. In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood mononuclear cel­ls of patients with myasthenia gravis. Neurology 1983; 33(5): 604– 608.

42. Ber­rih‑ Aknin S, Ragheb S, Le Panse R, Lisak RP. Ectopic germinal centers, BAF­f and anti‑B‑ cel­l therapy in myasthenia gravis. Autoim­mun Rev 2013; 12(9): 885– 893. doi: 10.1016/ j.autrev.2013.03.011.

43. Wang ZY, Link H, Qiao J, Ols­son T, Huang WX. Cel­l autoim­munity to acetylcholine receptor and its subunits in Lewis rats over the course of experimental autoim­mune myasthenia gravis. J Neuroim­munol 1993; 45: 103– 112.

44. Vrolix K, Fraus­sen J, Losen M, Stevens J, Lazaridis K, Molenaar PC et al. Clonal heterogeneity of thymic B cel­ls from early‑ onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoim­mun 2014; 52: 101– 112. doi: 10.1016/ j.jaut.2013.12.008.

45. Kim JY, Yang Y, Moon JS, Lee EY, So SH, Lee HS et al. Serum BAF­f expres­sion in patients with myasthenia gravis. J Neuroim­munol 2008; 199(1– 2): 151– 154. doi: 10.1016/ j.jneuroim.2008.05.010.

46. Davidson A. Target­ing BAF­f in autoim­munity. Cur­r Opin Im­munol 2010; 22(6): 732– 739. doi: 10.1016/ j.coi.2010.09.010.

47. Ber­rih‑ Aknin S, Ragheb S, Le Panse R, Lisak RP. Ectopic germinal centers, BAF­f and anti‑B‑ cel­l therapy in myasthenia gravis. Autoim­mun Rev 2013; 12: 885– 893. doi: 10.1016/ j.autrev.2013.03.011.

48. Mu L, Sun B, Kong Q, Wang J, Wang G, Zhang S et al. Disequilibrium of T helper type 1,2 and 17 cel­ls and regulatory T cel­ls dur­ing the development of experimental autoim­mune myasthenia gravis. Im­munology 2009; 128 (Suppl 1): 826– 836. doi: 10.1111/ j.1365‑ 2567.2009.03089.x.

49. Roche JC, Capablo JL, Lar­rad L, Gervas‑ Ar­ruga J, Ara JR, Sanchez A et al. Increased serum interleukin‑17 levels in patients with myasthenia gravis. Muscle Nerve 2011; 44(2): 278– 280. doi: 10.1002/ mus.22070.

50. Wang Z, Wang W, Chen Y, Wei D. T helper type 17 cel­lsexpand in patients with myasthenia‑as­sociated thymoma. Scand J Im­munol 2012; 76: 54– 61. doi: 10.1111/ j.1365‑ 3083.2012.02703.x.

51. Cordiglieri C, Marolda R, Franzi S, Cappel­letti C, Giardina C, Motta T et al. In­nate im­munity in myasthenia gravis thymus: pathogenic ef­fects of Tol­l‑like receptor 4signal­ing on autoim­munity. J Autoim­mun 2014; 52: 74– 89. doi: 10.1016/ j.jaut.2013.12.013.

52. Schaf­fert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A et al. IL‑17– produc­ing CD4+ T cel­ls contribute to the los­s of B cel­l tolerance in experimental autoim­mune myasthenia gravis. Eur J Im­munol 2015; 45(5): 1339– 1347. doi: 10.1002/ eji.201445064.

53. Ber­rih‑ Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of im­mune dysregulation and etiological mechanisms. J Autoim­mun 2014; 52: 90– 100. doi: 10.1016/ j.jaut.2013.12.011.

54. Gradolatto A, Nazzal D, Truf­fault F, Bismuth J, Fa-del E, Foti M et al. Both Treg cel­ls and Tconv cel­ls aredefective in the myasthenia gravis thymus: roles of IL‑17 and TNF‑α. J Autoim­mun 2014; 52: 53– 63. doi: 10.1016/ j.jaut.2013.12.015.

55. Valencia X, Stephens G, Goldbach‑ Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4+CD25 T‑ regulatory cel­ls. Blood 2006; 108(1): 253– 261.

56. Cohen‑ Kaminski S, Delattre RM, Devergne O, Klingel‑ Schmitt I, Emilie D, Galanaud P et al. High IL‑6 gene expres­sion and production by cultured human thymic epithelial cel­ls from patients with myasthenia gravis. An­n N Y Acad Sci 1993; 681: 97– 99.

57. Endo S, Hasegawa T, Sato Y. Inhibition of IL‑6 overproduction by steroid treatment before trans­sternal thymectomy for myasthenia gravis: does it help stabilize perioperative condition? Eur J Neurol 2005; 12(10): 768– 773.

58. Takatsu K. Cytokines involved in B cel­l dif­ferentiation and their sites of action. Proc Soc Exp Biol Med 1997; 215(2): 121– 133.

59. Aricha R, Mizrachi K, Fuchs S, Souroujon MC. Block­ing of IL‑6 suppres­ses experimental autoim­mune myasthenia gravis. J Autoim­mun 2011; 36(2): 135– 141. doi: 10.1016/ j.jaut.2010.12.001.

60. Deng C, Goluczko E, Tuzun E, Yang H, Christa-dos­s P. Resistance to experimental autoim­mune myasthenia gravis in IL‑6- deficient mice is as­sociated with reduced germinal center formation and reduced C3 production. J Im­munol 2002; 169(2): 1077– 1083.

Labels
Paediatric neurology Neurosurgery Neurology
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account