#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cardiac conduction system as a new organ at risk in radiotherapy


Authors: M. Domanský 1,2;  J. Kubeš 1
Authors‘ workplace: Proton Therapy Center Czech s. r. o., Praha 1;  Onkologická klinika 2. LF UK a FN Motol, Praha 2
Published in: Klin Onkol 2024; 38(1): 10-19
Category: Reviews
doi: https://doi.org/10.48095/ccko202410

Overview

Background: Cardiovascular diseases represent the most common non-oncologic cause of death in patients following radiotherapy (RT) in the thoracic region. Radiation-induced heart disease (RIHD) can manifest as various heterogeneous clinical entities. However, the influence of RT on the cardiac conduction system has only recently gained more attention. Arrhythmogenic toxicity, i.e., conduction disorders and arrhythmias, constitutes a significant part of these adverse effects. The cardiac conduction system is not routinely monitored as an organ at risk (OaR). Its specific histological nature and function suggest different sensitivity and response to radiation. The heart is a highly heterogeneous organ, and the routinely monitored dose to the whole heart may not adequately characterize the risk of increased arrhythmogenic toxicity from RT. Cardiac structures, including the conduction system, appear to be additional OaRs for which dose distribution should be monitored. Material and methods: For the systematic selection of studies, we utilized the PubMed database with keywords derived from the analysis of existing literature. The search was limited to English-language publications, and the selection criteria included relevance to the topic and the quality of methodology. Purpose: This article summarizes the impact of RT on the cardiac conduction system. Conclusion: Radiotherapy-induced cardiotoxicity significantly affects morbidity and mortality. The heart exhibits heterogeneity in terms of radiosensitivity. Certain cardiac subregions in the dose distribution show a higher correlation with poorer overall survival than routinely monitored doses to the whole heart and derived parameters (the volumes irradiated with the doses of 5 or 30 Gy – V5 or V30, respectively). The most radiosensitive subregions appear to be the base of the heart, including the beginning of the conduction system. Higher doses to the conduction system, especially the sinoatrial (SA) node, are associated with a higher incidence of a wide range of arrhythmias and poorer overall survival. However, dose limits (Dmean and Dmax) for the conduction system have not yet been established. Dosimetric studies have identified cutoff doses to the SA node, exceeding which there is a significant increase in mortality and the occurrence of arrhythmias.

Keywords:

cardiotoxicity – heart conduction system – arrhythmias, cardiac – organs at risk – sinoatrial node – radiation injuries


Sources

1. Atkins KM, Chaunzwa TL, Lamba N et al. Association of left anterior descending coronary artery radiation dose with major adverse cardiac events and mortality in patients with non-small cell lung cancer. JAMA Oncol 2021; 7(2): 206–219. doi: 10.1001/ jamaoncol.2020.6332.

2. Yegya-Raman N, Wang K, Kim S et al. Dosimetric predictors of symptomatic cardiac events after conventional-dose chemoradiation therapy for inoperable NSCLC. J Thorac Oncol 2018; 13(10): 1508–1518. doi: 10.1016/
 j.jtho.2018.05.028.

3. Jang BS, Cha MJ, Kim HJ et al. Heart substructural dosimetric parameters and risk of cardiac events after definitive chemoradiotherapy for stage III non-small cell lung cancer. Radiother Oncol 2020; 152: 126–132. doi: 10.1016/ j.radonc.2020.09.050.

4. Atkins KM, Rawal B, Chaunzwa TL et al. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol 2019; 73(23): 2976–2987. doi: 10.1016/ j.jacc.2019.03.500.

5. Jaworski C, Mariani JA, Wheeler G et al. Cardiac complications of thoracic irradiation. J Am Coll Cardiol 2013; 61(23): 2319–2328. doi: 10.1016/ j.jacc.2013.01.090.

6. Adams MJ, Lipshultz SE, Schwartz C et al. Radiation-associated cardiovascular disease: manifestations and management. Semin Radiat Oncol 2003; 13(3): 346–356. doi: 10.1016/ S1053-4296(03)00026-2.

7. Loap P, Mirandola A, De Marzi L et al. Cardiac conduction system exposure with modern radiotherapy techniques for mediastinal Hodgkin lymphoma irradiation. Acta Oncol 2022; 61(4): 496–499. doi: 10.1080/ 0284 186X.2021.2025265.

8. Loap P, Servois V, Dhonneur G et al. A radiation therapy contouring atlas for cardiac conduction node delineation. Pract Radiat Oncol 2021; 11(4): e434–e437. doi: 10.1016/ 
j.prro.2021.02.002.

9. Errahmani MY, Locquet M, Broggio D et al. Supraventricular cardiac conduction system exposure in breast cancer patients treated with radiotherapy and association with heart and cardiac chambers doses. Clin Transl Radiat Oncol 2022; 38: 62–70. doi: 10.1016/ j.ctro.2022.10.015.

10. Loap P, Fourquet A, Kirova YM. Evaluation of cardiac conduction system exposure with breast volumetric modulated arc therapy and intensity modulated proton therapy. Int J Radiat Oncol Biol Phys Volume 2021; 111(3): e224. doi: 10.1016/ j.ijrobp.2021.07.773.

11. Salim N, Popodko A, Tumanova K et al. Cardiac dose in the treatment of synchronous bilateral breast cancer patients between three different radiotherapy techniques (VMAT, IMRT, and 3D CRT). Discov Oncol 2023; 14(1): 29. doi: 10.1007/ s12672-023-00636-z.

12. McWilliam A, Kennedy J, Hodgson C et al. Radiation dose to heart base linked with poorer survival in lung cancer patients. Eur J Cancer 2017; 85: 106–113. doi: 10.1016/ j.ejca.2017.07.053.

13. McWilliam A, Dootson C, Graham L et al. Dose surface maps of the heart can identify regions associated with worse survival for lung cancer patients treated with radiotherapy. Phys Imaging Radiat Oncol 2020; 15: 46–51. doi: 10.1016/ j.phro.2020.07.002.

14. McWilliam A, Khalifa J, Vasquez Osorio E et al. Novel methodology to investigate the effect of radiation dose to heart substructures on overall survival. Int J Radiat Oncol Biol Phys 2020; 108(4): 1073–1081. doi: 10.1016/
 j.ijrobp.2020.06.031.

15. McWilliam A, Abravan A, Banfill K et al. Demystifying the tesults of RTOG 0617: identification of dose sensitive cardiac subregions associated with overall survival. J Thorac Oncol 2023; 18(5): 599–607. doi: 10.1016/
 j.jtho.2023.01.085.

16. Ghita M, Gill EK, Walls GM et al. Cardiac sub-volume targeting demonstrates regional radiosensitivity in the mouse heart. Radiother Oncol 2020; 152: 216–221. doi: 10.1016/ j.radonc.2020.07.016.

17. Stam B, Peulen H, Guckenberger M et al. Dose to heart substructures is associated with non-cancer death after SBRT in stage I-II NSCLC patients. Radiother Oncol 2017; 123(3): 370–375. doi: 10.1016/ j.radonc.2017.04.017.

18. Liu X, Fatyga M, Schild SE et al. Detecting spatial susceptibility to cardiac toxicity of radiation therapy for lung cancer. IISE Trans Healthc Syst Eng 2020; 10(4): 243–250. doi: 10.1080/ 24725579.2020.1795012.

19. Kim KH, Oh J, Yang G et al. Association of sinoatrial node radiation dose with atrial fibrillation and mortality in patients with lung cancer. JAMA Oncol 2022; 8(11):
1624–1634. doi: 10.1001/ jamaoncol.2022.4202.

20. Qian Y, Zhu H, Pollom EL et al. Sinoatrial node toxicity after stereotactic ablative radiation therapy to lung tumors. Pract Radiat Oncol 2017; 7(6): e525–e529. doi: 10.1016/ j.prro.2017.04.005.

21. Taunk NK, Haffty BG, Kostis JB et al. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol 2015; 5: 39. doi: 10.3389/ fonc.2015.00039.

22. Zhang DM, Navara R, Yin T et al. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun 2021; 12(1): 5558. doi: 10.1038/ s41467-021-25730-0.

23. Ellahham S, Khalouf A, Elkhazendar M et al. An overview of radiation-induced heart disease. Radiat Oncol J 2022; 40(2): 89–102. doi: 10.3857/ roj.2021.00766.

24. Lancellotti P, Nkomo VT, Badano LP et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 2013; 14(8): 721–740. doi: 10.1093/ ehjci/ jet123.

25. Boero IJ, Paravati AJ, Triplett DP et al. Modern radiation therapy and cardiac outcomes in breast cancer. Int J Radiat Oncol Biol Phys 2016; 94(4): 700–708. doi: 10.1016/ j.ijrobp.2015.12.018.

26. Boekel NB, Schaapveld M, Gietema JA et al. Cardiovascular disease risk in a large, population-based cohort of breast cancer survivors. Int J Radiat Oncol Biol Phys 2016; 94(5): 1061–1072. doi: 10.1016/ j.ijrobp.2015.11.040.

27. Yusuf SW, Venkatesulu BP, Mahadevan LS et al. Radiation-induced cardiovascular disease: a clinical perspective. Front Cardiovasc Med 2017; 4: 66. doi: 10.3389/ fcvm.2017.00066.

28. Vivekanandan S, Landau DB, Counsell N et al. The impact of cardiac radiation dosimetry on survival after radiation therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2017; 99(1): 51–60. doi: 10.1016/
 j.ijrobp.2017.04.026.

29. McWilliam A, Vasquez Osorio E, Faivre-Finn C et al. Influence of tumour laterality on patient survival in non-small cell lung cancer after radiotherapy. Radiother Oncol 2019; 137: 71–76. doi: 10.1016/ j.radonc.2019.04.
022.

30. Aleman BM, van den Belt-Dusebout AW, Klokman WJ et al. Long-term cause-specific mortality of patients treated for Hodgkin‘s disease. J Clin Oncol 2003; 21(18): 3431–3439. doi: 10.1200/ JCO.2003.07.131.

31. Swerdlow AJ, Higgins CD, Smith P et al. Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst 2007; 99(3): 206–214. doi: 10.1093/ jnci/ djk029.

32. Lyon AR, López-Fernández T, Couch LS et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43(41): 4229–4361. doi: 10.1093/ eurheartj/ ehac244.

33. Yusuf SW, Sami S, Daher IN. Radiation-induced heart disease: a clinical update. Cardiol Res Pract 2011; 2011: 317659. doi: 10.4061/ 2011/ 317659.

34. Lakshminarayan K, Anderson DC, Herzog CA et al. Clinical epidemiology of atrial fibrillation and related cerebrovascular events in the United States. Neurologist 2008; 14(3): 143–150. doi: 10.1097/ NRL.0b013e31815c
ffae.

35. Koutroumpakis E, Palaskas NL, Lin SH et al. Modern radiotherapy and risk of cardiotoxicity. Chemotherapy 2020; 65(3–4): 65–76. doi: 10.1159/ 000510573.

36. Adams MJ, Lipsitz SR, Colan SD et al. Cardiovascular status in long-term survivors of Hodgkin‘s disease treated with chest radiotherapy. J Clin Oncol 2004; 22(15):
3139–3148. doi: 10.1200/ JCO.2004.09.109.

37. Wang H, Wei J, Zheng Q et al. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci 2019; 15(10): 2128–2138. doi: 10.7150/ ijbs.35460.

38. Trapani G, Quartuccio S, Dalbeni A et al. Late radiation-induced cardiac conduction system abnormalities. Int J Cardiol 2014; 173(3): e40–e41. doi: 10.1016/ j.ijcard.2014.03.125.

39. Nakao T, Kanaya H, Namura M et al. Complete atrioventricular block following radiation therapy for malignant thymoma. Jpn J Med 1990; 29(1): 104–110. doi: 10.2169/ internalmedicine1962.29.104.

40. Bates J, Shrestha S, Liu Q et al. Cardiac substructure dosimetry and late cardiac arrhythmia in the Childhood Cancer Survivor Study. Radiot Oncol 2021; 161 (Suppl 1): S140–S141.

41. Csepe TA, Zhao J, Hansen BJ et al. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog Biophys Mol Biol 2016; 120(1–3):
164–178. doi: 10.1016/ j.pbio­molbio­.2015.12.011.

42. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 2010; 97(1): 149–161. doi: 10.1016/ j.radonc.2010.09.002.

43. Rodemann HP, Peterson HP, Schwenke K et al. Terminal differentiation of human fibroblasts is induced by radiation. Scanning Microsc 1991; 5(4): 1135–1142; discussion 1142–1143.

44. Cohen SI, Bharati S, Glass J et al. Radiotherapy as a cause of complete atrioventricular block in Hodgkin‘s disease. An electrophysiological-pathological correlation. Arch Intern Med 1981; 141(5): 676–679.

45. John RM, Shinohara ET, Price M et al. Radiotherapy for ablation of ventricular tachycardia: assessing collateral dosing. Comput Biol Med 2018; 102: 376–380. doi: 10.1016/ j.compbio­med.2018.08.010.

46. Mulrooney DA, Yeazel MW, Kawashima T et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 2009; 339: b4606. doi: 10.1136/ bmj.b4606.

47. Bates JE, Shrestha S, Liu Q et al. Cardiac substructure radiation dose and risk of late cardiac disease in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol 2023; 41(22): 3826–3838. doi: 10.1200/ JCO.22.02320.

48. van Nimwegen FA, Ntentas G, Darby SC et al. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines. Blood 2017; 129(16): 2257–2265. doi: 10.1182/ blood-2016-09-740332.

49. van Nimwegen FA, Schaapveld M, Cutter DJ et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol 2016; 34(3): 235–243. doi: 10.1200/ JCO.2015.63.4444.

50. Maraldo MV, Giusti F, Vogelius IR et al. Cardiovascular disease after treatment for Hodgkin’s lymphoma: an analysis of nine collaborative EORTC-LYSA trials. Lancet Haematol 2015; 2(11): e492–e502. doi: 10.1016/ S2352-3026(15)00153-2.

51. Hoppe BS, Bates JE, Mendenhall NP et al. The meaningless meaning of mean heart dose in mediastinal lymphoma in the modern radiation therapy era. Pract Radiat Oncol 2020; 10(3): e147–e154. doi: 10.1016/ j.prro.2019.09.015.

52. van Nimwegen FA, Ntentas G, Darby SC et al. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines. Blood 2017; 129(16): 2257–2265. doi: 10.1182/ blood-2016-09-740332.

53. Hahn E, Jiang H, Ng A et al. Late cardiac toxicity after mediastinal radiation therapy for Hodgkin lymphoma: contributions of coronary artery and whole heart dose-volume variables to risk prediction. Int J Radiat Oncol Biol Phys 2017; 98(5): 1116–1123. doi: 10.1016/ j.ijrobp.2017.03.026.

54. Cutter DJ, Schaapveld M, Darby SC et al. Risk of valvular heart disease after treatment for Hodgkin lymphoma. J Natl Cancer Inst 2015; 107(4): djv008. doi: 10.1093/ jnci/ djv008.

55. Kong FM, Zhao J, Wang J et al. Radiation dose effect in locally advanced non-small cell lung cancer. J Thorac Dis 2014; 6(4): 336–347. doi: 10.3978/ j.issn.2072-1439.2014.01.23.

56. Stam B, Peulen H, Guckenberger M et al. Dose to heart substructures is associated with non-cancer death after SBRT in stage I-II NSCLC patients. Radiother Oncol 2017; 123(3): 370–375. doi: 10.1016/ j.radonc.2017.04.
017.

57. Wong OY, Yau V, Kang J et al. Survival impact of cardiac dose following lung stereotactic body radiotherapy. Clin Lung Cancer 2018; 19(2): e241–e246. doi: 10.1016/
 j.cllc.2017.08.002.

58. Chen V, Song A, Werner-Wasik M et al. Effect of radiation dose to cardiac substructures on the acute development of new arrhythmias following conventionally fractionated radiation treatment to the lung. Int J Radiat Oncol Biol Phys 2019; 105(1): E500. doi: 10.1016/
 j.ijrobp.2019.06.1415.

59. Lynch PJ, Jaffe CC. Heart anterior view coronal section. [online]. Available from: https://commons.wikimedia.org/wiki/File:Heart_anterior_view_coronal_section.jpg.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 1

2024 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#