#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Germline mutations in RAD51C and RAD51D and hereditary predisposition to ovarian cancer


Authors: RNDr. Soukupová Jana, Ph.D. 1*;  Mgr. Lhotová Klára 1*;  RNDr. Janatová Markéta, Ph.D. 1;  MUDr. Kleiblová Petra, Ph.D. 2;  MUDr. Vočka Michal 3;  doc. MUDr. Foretová Lenka, Ph.D. 4;  prof. MUDr. Zikán Michal, Ph.D. 5;  prof. MUDr. Kleibl Zdeněk, Ph.D. 1
Authors‘ workplace: Ústav biochemie a experimentální onkologie, 1. LF UK, Praha 1;  Ústav biologie a lékařské genetiky, 1. LF UK a VFN v Praze 2;  Onkologická klinika 1. LF UK a VFN v Praze 3;  Oddělení epidemiologie a genetiky nádorů, MOÚ, Brno 4;  Gynekologicko-porodnická klinika 1. LF UK a Nemocnice Na Bulovce, Praha 5
Published in: Klin Onkol 2021; 34(1): 26-32
Category: Review
doi: https://doi.org/10.48095/ccko202126

Overview

Ovarian cancer is one of the most common gynecologic cancers with the highest mortality rate over a long period. Genetic predisposition to ovarian cancer is unusually high. In the Czech Republic, causal mutation in any ovarian cancer predisposition gene is identified in approximately 30% of the ovarian cancer patients. Therefore, according to the current guidelines, all ovarian cancer patients should be provided with genetic testing. The BRCA1 and BRCA2 are the two major ovarian cancer predisposition genes. Nevertheless, mutations in other predisposition genes, including RAD51C and RAD51D, are associated with high ovarian cancer risk. Mutations in RAD51C and RAD51D are found in 1% of ovarian cancer patients in each respective gene. Currently, identification of germline mutation in RAD51C and RAD51D is primarily of preventive importance but it potentially could make a prognostic difference. The aim of this review is to summarize the recent RAD51C and RAD51D knowledge, including the biological function, cancer risks associated with germline mutations, and recommendations for mutation carriers.

Keywords:

ovarian cancer – DNA repair – cancer genes – next gen sequencing – Mutation – genetic testing


Sources

1. Muinao T, Deka Boruah HP, Pal M. Multi-bio­marker panel signature as the key to dia­gnosis of ovarian cancer. Heliyon 2019; 5 (12): e02826. doi: 10.1016/j.heliyon.2019.e02826.

2. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46 (4): 765–781. doi: 10.1016/j.ejca.2009. 12.014.

3. Goodman MT, Howe HL, Tung KH et al. Incidence of ovarian cancer by race and ethnicity in the United States, 1992–1997. Cancer 2003; 97 (10 Suppl): 2676–2685. doi: 10.1002/cncr.11349.

4. Momenimovahed Z, Tiznobaik A, Taheri S et al. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health 2019; 11: 287–299. doi: 10.2147/IJWH.S197604

5. Epidemiologie a incidence zhoubných nádorů v České republice. [online]. Dostupné z: www.svod.cz.

6. Colombo N, Van Gorp T, Parma G et al. Ovarian cancer. Crit Rev Oncol Hematol 2006; 60 (2): 159–179. doi: 10.1016/j.critrevonc.2006.03.004.

7. Wong AS, Auersperg N. Ovarian surface epithelium: family history and early events in ovarian cancer. Reprod Biol Endocrinol 2003; 1: 70. doi: 10.1186/1477-7827- 1-70.

8. Torre LA, Trabert B, DeSantis CE et al. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68 (4): 284–296. doi: 10.3322/caac.21456.

9. Piver MS. Hereditary ovarian cancer. Lessons from the first twenty years of the Gilda Radner Familial Ovarian Cancer Registry. Gynecol Oncol 2002; 85 (1): 9–17. doi: 10.1006/gyno.2001.6465.

10. Walsh T, Casadei S, Lee MK et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA 2011; 108 (44): 18032–18037. doi: 10.1073/pnas.1115052108.

11. Krivokuca A, Boljevic I, Jovandic S et al. Germline mutations in cancer susceptibility genes in high grade serous ovarian cancer in Serbia. J Hum Genet 2019; 64 (4): 281–290. doi: 10.1038/s10038-019-0562-z.

12. Lhotova K, Stolarova L, Zemankova P et al. Multigene panel germline testing of 1333 Czech patients with ovarian cancer. Cancers (Basel) 2020; 12 (4): 956. doi: 10.3390/cancers12040956.

13. Hall JM, Lee MK, Newman B et al. Linkage of early–onset familial breast cancer to chromosome 17q21. Science 1990; 250 (4988): 1684–1689. doi: 10.1126/science.2270482.

14. Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266 (5182): 66–71. doi: 10.1126/science.7545954.

15. Wooster R, Bignell G, Lancaster J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378 (6559): 789–792. doi: 10.1038/378789a0.

16. Wooster R, Neuhausen SL, Mangion J et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994; 265 (5181): 2088–2090. doi: 10.1126/science.8091231.

17. Meindl A, Hellebrand H, Wiek C et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 2010; 42 (5): 410–414. doi: 10.1038/ng.569.

18. Loveday C, Turnbull C, Ramsay E et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet 2011; 43 (9): 879–882. doi: 10.1038/ng.893.

19. Loveday C, Turnbull C, Ruark E et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat Genet 2012; 44 (5): 475–476. doi: 10.1038/ng.2224.

20. Kurian AW, Hughes E, Handorf EA et al. Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women. JCO Precision Oncology 2017; (1): 1–12.

21. Foretova L, Navratilova M, Svoboda M et al. Recommendations for preventive care for women with rare genetic cause of breast and ovarian cancer. Klin Onkol 2019; 32 (Suppl 2): 2S6–2S13. doi: 10.14735/amko2019S6.

22. Niraj J, Farkkila A, D‘Andrea AD. The Fanconi anemia pathway in cancer. Annu Rev Cancer Biol 2019; 3: 457–478. doi: 10.1038/nrm.2016.48.

23. Vaz F, Hanenberg H, Schuster B et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 2010; 42 (5): 406–409. doi: 10.1038/ng.570.

24. Pittman DL, Weinberg LR, Schimenti JC. Identification, characterization, and genetic mapping of RAD51D, a new mouse and human RAD51/RecA-related gene. Genomics 1998; 49 (1): 103–111. doi: 10.1006/geno.1998.5226.

25. Shibata T, Nishinaka T, Mikawa T et al. Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: a possible advantage of DNA over RNA as genomic material. Proc Natl Acad Sci USA 2001; 98 (15): 8425–8432. doi: 10.1073/pnas.111005198.

26. Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. Breast 2016; 28: 136–144. doi: 10.1016/j.breast.2016.05.006.

27. Sun Y, McCorvie TJ, Yates LA et al. Structural basis of homologous recombination. Cell Mol Life Sci 2020; 77 (1): 3–18. doi: 10.1007/s00018-019-03365-1.

28. Chun J, Buechelmaier ES, Powell SN. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol 2013; 33 (2): 387–395. doi: 10.1128/MCB.00465-12.

29. Sullivan MR, Bernstein KA. RAD-ical new insights into RAD51 regulation. Genes (Basel) 2018; 9 (12): 629. doi: 10.3390/genes9120629.

30. Badie S, Liao C, Thanasoula M et al. RAD51C facilitates checkpoint signaling by promoting CHK2 phosphorylation. J Cell Biol 2009; 185 (4): 587–600. doi: 10.1083/jcb.200811079.

31. Tarsounas M, Munoz P, Claas A et al. Telomere maintenance requires the RAD51D recombination/repair protein. Cell 2004; 117 (3): 337–347. doi: 10.1016/s0092-86 74 (04) 00337-x.

32. Lu HM, Li S, Black MH et al. Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol 2019; 5 (1): 51–57. doi: 10.1001/jamaoncol.2018.2956.

33. Cunningham JM, Cicek MS, Larson NB et al. Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status. Sci Rep 2014; 4: 4026. doi: 10.1038/srep04026.

34. Suszynska M, Klonowska K, Jasinska AJ et al. Large-scale meta-analysis of mutations identified in panels of breast/ovarian cancer-related genes — providing evidence of cancer predisposition genes. Gynecol Oncol 2019; 153 (2): 452–462. doi: 10.1016/j.ygyno.2019.01.027.

35. Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res 2020; 13 (1): 50. doi: 10.1186/s13048-020-00654-3.

36. Yang X, Song H, Leslie G et al. Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. J Natl Cancer Inst 2020; 112 (12): 1242–1250. doi: 10.1093/jnci/djaa030.

37. Janatova M, Soukupova J, Stribrna J et al. Mutation analysis of the RAD51C and RAD51D genes in high-risk ovarian cancer patients and families from the Czech Republic. PloS One 2015; 10 (6): e0127711. doi: 10.1371/journal.pone.0127711.

38. Castera L, Krieger S, Rousselin A et al. Next-generation sequencing for the dia­gnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet 2014; 22 (11): 1305–1313. doi: 10.1038/ejhg.2014.16.

39. Coulet F, Fajac A, Colas C et al. Germline RAD51C mutations in ovarian cancer susceptibility. Clin Genet 2013; 83 (4): 332–336. doi: 10.1111/j.1399-0004.2012.01917.x.

40. Osorio A, Endt D, Fernandez F et al. Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum Mol Genet 2012; 21 (13): 2889–2898. doi: 10.1093/hmg/dds115.

41. Romero A, Perez-Segura P, Tosar A et al. A HRM-based screening method detects RAD51C germ-line deleterious mutations in Spanish breast and ovarian cancer families. Breast Cancer Res Treat 2011; 129 (3): 939–946. doi: 10.1007/s10549-011-1543-x.

42. Schnurbein G, Hauke J, Wappenschmidt B et al. RAD51C deletion screening identifies a recurrent gross deletion in breast cancer and ovarian cancer families. Breast Cancer Res 2013; 15 (6): R120. doi: 10.1186/bcr3589.

43. Thompson ER, Boyle SE, Johnson J et al. Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat 2012; 33 (1): 95–99. doi: 10.1002/humu.21625.

44. Li J, Meeks H, Feng B-J et al. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. J Med Genet 2016; 53 (1): 34–42. doi: 10.1136/jmedgenet-2015-103452.

45. Sopik V, Akbari MR, Narod SA. Genetic testing for RAD51C mutations: in the clinic and community. Clin Genet 2015; 88 (4): 303–312. doi: 10.1111/cge.12548.

46. Vuorela M, Pylkas K, Hartikainen JM et al. Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility. Breast Cancer Res Treat 2011; 130 (3): 1003–1010. doi: 10.1007/s10549-011-1677-x.

47. Golmard L, Castera L, Krieger S et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur J Hum Genet 2017; 25 (12): 1345–1353. doi: 10.1007/s10549-011-1677-x.

48. Baker JL, Schwab RB, Wallace AM et al. Breast cancer in a RAD51D mutation carrier: case report and review of the literature. Clin Breast Cancer 2015; 15 (1): e71–e75. doi: 10.1016/j.clbc.2014.08.005.

49. Couch FJ, Shimelis H, Hu C et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 2017; 3 (9): 1190–1196. doi: 10.1001/jamaoncol.2017.0424.

50. Kurian AW, Ward KC, Howlader N et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol 2019; 37 (15): 1305–1315. doi: 10.1200/JCO.18.01854.

51. Paulo P, Maia S, Pinto C et al. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet 2018; 14 (4): e1007355. doi: 10.1371/journal.pgen.1007355.

52. Pritchard CC, Mateo J, Walsh MF et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016; 375 (5): 443–453. doi: 10.1056/NEJMoa1603144.

53. Pelttari LM, Kiiski J, Nurminen R et al. A Finnish founder mutation in RAD51D: analysis in breast, ovarian, prostate, and colorectal cancer. J Med Genet 2012; 49 (7): 429–432. doi: 10.1136/jmedgenet-2012-100852.

54. Osher DJ, De Leeneer K, Michils G et al. Mutation analysis of RAD51D in non-BRCA1/2 ovarian and breast cancer families. Br J Cancer 2012; 106 (8): 1460–1463. doi: 10.1038/bjc.2012.87.

55. Manchanda R, Menon U. Setting the threshold for surgical prevention in women at increased risk of ovarian cancer. Int J Gynecol Cancer 2018; 28 (1): 34–42. doi: 10.1097/IGC.0000000000001147.

56. Soukupova J, Lhotova K, Zemankova P et al. Contribution of massive parallel sequencing to dia­gnosis of hereditary ovarian cancer in the Czech Republic. Klin Onkol 2019; 32 (Suppl 2): 2S72–2S78. doi: 10.14735/amko2019S72.

57. Daly MB, Pilarski R, Berry M et al. NCCN Guidelines insights: genetic/familial high-risk assessment: breast and ovarian, Version 2.2017. J Natl Compr Canc Netw 2017; 15 (1): 9–20. doi: 10.6004/jnccn.2017.0003.

58. Song H, Dicks E, Ramus SJ et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol 2015; 33 (26): 2901–2907. doi: 10.1200/JCO.2015.61.2408.

59. Koudova M, Puchmajerova A. Risks of solid tumors in heterozygous carriers of recessive syndromes. Klin Onkol 2019; 32 (Suppl 2): 14–23. doi: 10.14735/amko2019S14.

60. Ngoi NY, Tay D, Heong V et al. Reversal of bowel obstruction with platinum-based chemotherapy and olaparib in recurrent, short platinum-free interval, RAD51C germline mutation–associated ovarian cancer. JCO Precision Oncology 2018; (2): 1–8.

61. George A, Kaye S, Banerjee S. Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer. Nature Rev Clin Oncol 2017; 14 (5): 284–296. doi: 10.1038/nrclinonc.2016.191.

62. Ledermann J, Harter P, Gourley C et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. The Lancet Oncology 2014; 15 (8): 852–861. doi: 10.1016/S1470-2045 (14) 70228-1.

63. Chandran EA, Kennedy I. Significant tumor response to the poly (adp-ribose) polymerase inhibitor olaparib in heavily pretreated patient with ovarian carcinosarcoma harboring a germline RAD51D mutation. JCO Precision Oncology 2018; (2): 1–4.

64. Castera L, Harter V, Muller E et al. Landscape of pathogenic variations in a panel of 34 genes and cancer risk estimation from 5131 HBOC families. Genet Med 2018; 20 (12): 1677–1686. doi: 10.1038/s41436-018-0005-9.

65. Li N, McInerny S, Zethoven M et al. Combined tumor sequencing and case-control analyses of RAD51C in breast cancer. J Natl Cancer Inst 2019; 111 (12): 1332–1338. doi: 10.1093/jnci/djz045.

66. Hauke J, Horvath J, Gross E et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine dia­gnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med 2018; 7 (4): 1349–1358. doi: 10.1002/cam4.1376.

67. Couch FJ, Shimelis H, Hu C et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 2017; 3 (9): 1190–1196. doi: 10.1001/jamaoncol.2017.0424.

68. Slavin TP, Maxwell KN, Lilyquist J et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 2017; 3: 22. doi: 10.1038/s41523-017-0024-8.

69. Lilyquist J, LaDuca H, Polley E et al. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol Oncol 2017; 147 (2): 375–380. doi: 10.1016/j.ygyno.2017.08.030.

70. Norquist BM, Harrell MI, Brady MF et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2016; 2 (4): 482–490. doi: 10.1001/jamaoncol.2015.5495.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 1

2021 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#