#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Radiotherapy of Lung Tumours in Idiopathic Pulmonary Fibrosis


Authors: V. Kolek 1;  M. Vašáková 2;  M. Šterclová 2;  K. Cwiertka 3;  D. Vrána 3;  A. Kudláček 4;  J. Skřičková 5;  M. Pešek 6;  J. Petera 7
Authors‘ workplace: Klinika plicních nemocí a tuberkulózy LF UP a FN Olomouc 1;  Pneumologická klinika 1. LF UK a Thomayerova nemocnice, Praha 2;  Onkologická klinika LF UP a FN Olomouc 3;  Klinika radiační onkologie, Masarykův onkologický ústav, Brno 4;  Klinika nemocí plicních a tuberkulózy LF MU a FN Brno 5;  Klinika pneumologie a ftizeologie LF UK a FN Plzeň 6;  Klinika onkologie a radioterapie LF UK a FN Hradec Králové 7
Published in: Klin Onkol 2017; 30(4): 303-306
Category: Short Communication
doi: https://doi.org/10.14735/amko2017303

Overview

Background:
This article is a joint statement of the Czech Pneumological and Physiological Society and the Czech Society for Radiation Oncology, Biology and Physics, and reviews current opinions on radiotherapy in patients with idiopathic pulmonary fibrosis (IPF). In general, radiotherapy of lung tumours is associated with risk of radiation pneumonitis (RP); moreover, IPF may be complicated by acute exacerbations (AE-IPF). Both complications may immediately threaten patients’ lives.

Material and Methods:
Assessment of individual radiotherapy modalities has shown that conventional radiotherapy is not appropriate, especially in large tumours. Up to 30% of patients are at risk of developing AE-IPF. As a result, as many as 83% of patients die within 3 months of initiation of lung cancer treatment. Fatal RP is most commonly observed within 2 months of radiotherapy. In IPF accompanied by early-stage non-small cell lung cancer (NSCLC), stereotactic body radiation therapy (SBRT) may be considered. NSCLC should be treated with chemotherapy. Several cases report severe exacerbations of subclinical IPF after SBRT even with minimal signs of previous interstitial involvement. Grade 2 RP has been reported in up to 50% of cases with any level of interstitial change detected by lung CT prior to radiotherapy. In palliative radiotherapy, external radiation may be considered as an exception if the main bronchi are involved. Similarly, brachytherapy may be indicated for certain cases of bronchial stenosis.

Results:
The presence of any level of interstitial change suggests a risk for fatal RP and AE-IPF. This is also supported by the fact that, at the present time, there are no dose limitations for radiation therapy of lung cancer in IPF, irrespective of whether conventional fractionated radiotherapy or SBRT is used. Moreover, there are no reliable predictive factors for lung involvement. In some studies, RP was more frequently associated with high CRP and LDH levels, PS 2 and interstitial changes of 10% or more. Treatment depends on the severity of the involvement. In more severe forms, corticosteroids, antibiotics and oxygen therapy should be administered. Ventilation support is often needed.

Conclusion:
Radiotherapy for patients with IPF and lung cancer or other chest tumours requires an individual approach depending on the local findings, the patient’s lung function and general condition, and the prognosis of the primary disease. Decision-making should take into consideration potential benefits and risks, and be carried out by a multidisciplinary team comprising a pulmonologist and clinical and radiation oncologists. Treatment should always be thoroughly discussed with the patient signing an informed consent form.

Key words:
idiopathic pulmonary fibrosis – chest radiotherapy – indications – radiation pneumonitis – acute exacerbation of idiopathic pulmonary fibrosis – treatment

This work was supported by grant AZV 16-32-318 A.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted:
4. 5. 2017

Accepted:
18. 5. 2017


Sources

1. Raghu G, Collard HR, Eqan JJ et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011; 183 (6): 788–824. doi: 10.1164/rccm.2009-040GL.

2. Vašáková M, Polák J, Matěj R. Intersticiální plicní procesy. Praha: Maxdorf 2013: 410.

3. Šterclová M, Vašáková M. Intersticiální plicní procesy a bronchogenní karcinom. Stud Pneumol Phthiseol 2015; 75 (6): 208–212.

4. Nakajima T, Cypel M, de Perrot M et al. Retrospective Analysis of Lung Transplant Recipients Found to Have Unexpected Lung Cancer in Explanted Lungs. Semin Thorac Cardiovasc Surg 2015; 27 (1): 9–14. doi: 10.1053/j.semtcvs.2015.02. 006.

5. Kreuter M, Ehlers-Tenenbaum S, Schaaf M et al. Treatment and outcome of lung cancer in idiopathic interstitial pneumonias. Sarcoidosis Vasc Difffuse Lung Dis 2014; 31 (4): 266–274.

6. Tomassetti S, Gurioli C, Ryu JH et al. The impact of lung cancer on survival of idiopathic pulmonary fibrosis. Chest 2015; 147 (1): 157–164. doi: 10.1378/chest.14-0359.

7. Vancheri C. Idiopathic pulmonary fibrosis and cancer: do they really look similar? BMC Med 2015; 13: 220. doi: 10.1186/s12916-015-0478-1.

8. Sekine I, Sumi M, Ito Y et al. Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients. Radiother Oncol 2006; 80 (1): 93–97.

9. Ozawa Y, Abe T, Omae M et al. Impact of Preexisting Interstitial Lung Disease on Acute, Extensive Radiation Pneumonitis: Retrospective Analysis of Patients with Lung Cancer. PLoS One 2015; 10 (10): e0140437. doi: 10.1371/journal.pone.0140437.

10. Khan KA, Kennedy MP, Moore E et al. Radiological characteristics, histological features and clinical outcomes of lung cancer patients with coexistent idiopathic pulmonary fibrosis. Lung 2015; 193 (1): 71–77. doi: 10.1007/s00408-014-9664-8.

11. Takenaka K, Yoshimura A, Okano T. Acute exacerbation of idopathic interstitial pneumonia complicated by lung cancer, caused by treatment for lung cancer. Jpn J Lung Cancer 1999; 39 (7): 955–962.

12. Takeda A, Ohashi T, Kunieda E et al. Early graphical appearance of radiation pneumonitis correlates with the severity of radiation pneumonitis after stereotactic body radiotherapy (SBRT) in patients with lung tumors. Int J Radiation Oncology Biol Phys 2010; 77 (3): 685–690. doi: 10.1016/j.ijrobp.2009.06.001.

13. Takeda A, Enomoto T, Sanuki N et al. Acute exacerbation of subclinical idiopathic pulmonary fibrosis triggered by hypofractionated stereotactic body radiotherapy in a patient with primary lung cancer and slightly focal honeycombing. Radiat Med 2008; 26 (8): 504–550. doi: 10.1007/s11604-008-0261-8.

14. Zhao J, Yorke ED, Li L et al. Simple factors associated with radiation-induced lung toxicity after stereotactic body radiotherapy of the thorax: a pooled analysis of 88 studies. Int J Radiation Oncol Biol Phys 2016; 95 (5): 1357–1366. doi: 10.1016/j.ijrobp.2016.03.024.

15. Hiraoka M, Ishikura SA. Japan clinical oncology group trial for stereotactic body radiation therapy of non-small cell lung cancer. J Thorac Oncol 2007; 2 (Suppl 3): S115–S117.

16. Guckenberger M, Heilman K, Wulf J et al. Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): results of a serial follow-up CT study. Radiother Oncol 2007; 85 (3): 435–442.

17. Hanibuchi M, Yamaguchi T, Okada T et al. Clinical examination of acute exacerbation of idiopathic interstitial pneumonia (IIP) combined with lung cancer after anti-cancer treatment. Jpn J Lung Cancer 2001; 41 (4): 281–286.

18. Skowronek J. Brachytherapy in the treatment of lung cancer – a valuable solution. J Contemp Brachytherapy 2015; 7 (4): 297–311. doi: 10.5114/jcb.2015.54038.

19. Wang S, Liao Z, Wei X et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006; 66 (5): 1399–1407.

20. Nagata Y, Hiraoka M, Mizowaki T et al. Survey of stereotactic body radiation therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group. Int J Radiation Oncol Biol Phys 2009; 75 (2): 343–347. doi: 10.1016/j.ijrobp.2009.02.087.

21. Yoshitake T, Shioyama Y, Asai K et al. Impact of Interstitial Changes on Radiation Pneumonitis After Stereotactic Body Radiation Therapy for Lung Cancer. Anticancer Res 2015; 35 (9): 4909–4913.

22. Metha V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 2005; 63 (1): 5–24.

23. Oh D, Ahn YC, Park HC et al. Prediction of radiation pneumonitis following high-dose thoracic radiation therapy by 3 Gy/fraction for non-small cell lung cancer: analysis of clinical and dosimetric factors. Jpn J Clin Oncol 2009; 39 (3): 151–157. doi: 10.1093/jjco/hyn158.

24. Minegishi Y, Takenaka K, Mizutani H et al. Exacerbation of idiopathic interstitial pneumonias associated with lung cancer therapy. Intern Med 2009; 48 (9): 665–672.

25. Sanuki N, Ono A, Komatsu E et al. Association of computed tomography-detected pulmonary interstitial changes with severe radiation pneumonitis for patients treated with thoracic radiotherapy. J Radiat Res 2012; 53 (1): 110–116.

26. Yamaguchi S, Ohguri T, Matsuki Y et al. Radiotherapy for thoracic tumors: association between subclinical interstitial lung disease and fatal radiation pneumonitis. Int J Clin Oncol 2015; 20 (1): 45–52. doi: 10.1007/s10147-014-0679-1.

27. Marks LB, Bentzen SM, Deasy JO et al. Radiation dose-volume effects in the lung. J Radiat Oncol Biol Phys 2010; 76 (Suppl 3): S70–S76. doi: 10.1016/j.ijrobp.2009.06.091.

28. Matsuo Y, Shibuya K, Nakamura M et al. Dose-volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 2012; 83 (4): e545–e549. doi: 10.1016/j.ijrobp.2012.01.018.

29. Benedict SH, Yenice KM, Followill D et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 2010; 37 (8): 4078–4101.

30. Ono T, Hareyama M, Nakamura T et al. The clinical results of proton beam therapy in patients with idiopathic pulmonary fibrosis: a single center experience. Radiat Oncol 2016; 11: 56–63. doi: 10.1186/s13014-016-06 37-3.

31. Linam JM, Madtes D, Chow L et al. The relationship between pulmonary function metrics and radiation-in-duced lung injury. J Solid Tumors 2013; 3 (1): 6–13.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#