#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inhibition of B Cell Receptor Signaling: A First Targeted Therapeutic Approach for Chronic Lymphocytic Leukemia and Other B Cell Lymphomas


Authors: Mráz M. 1–3;  M. Doubek 1,2;  J. Mayer 1,2
Authors‘ workplace: Interní hematologická a onkologická klinika LF MU a FN Brno 1;  CEITEC –  Středoevropský technologický institut, MU, Brno 2;  University of California‑ San Diego, Moores Cancer Center, La Jolla, CA, USA 3
Published in: Klin Onkol 2013; 26(3): 179-185
Category: Review

Overview

Chronic lymphocytic leukemia (CLL) is the most frequent, yet by conventional therapy still incurable, leukemia in the Western world. Accumulating evidence of the role of B  cell receptor (BCR) pathway in CLL B  cell bio­logy suggests the possible use of ’BCR inhibitors’ for targeted therapy. Recently published results of clinical trials of three different molecules (fosfamatinib, ibrutinib and GS‑ 1101) targeting BCR‑associated kinases (Syk, Btk, PI3K) showed impressive clinical activity in CLL. These findings will likely modify treatment approaches for chronic lymphocytic leukemia and some other B  cell lymphomas in the near future. Herein, we review the data on BCR pathway deregulation in malignant CLL B  cells, and the results of clinical trials utilizing fosfamatinib, ibrutinib and GS‑ 1101.

Key words:
BCR signaling –  B cell receptor –  Btk protein –  Syk protein –  Lyn protein –  PI3K –  CAL‑ 101 –  PCI‑ 32765 –  R788


Sources

1. Mráz M, Pavlová Š, Malčíková J et al. Molekulární patogeneze chronické lymfocytární leukémie. Transfuze a hematologie dnes 2010; 16: 16– 20.

2. Zenz T, Mertens D, Küppers R et al. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10(1): 37– 50.

3. Mráz M, Trbušek M, Doležalová D et al. Identifikace patogeneticky významných mutací u chronické lymfocytární leukémie pomocí „sekvenování nové generace“. Transfuze a hematologie dnes 2012; 18: 72– 75.

4. Dühren‑ von Minden M, Übelhart R, Schneider D et al. Chronic lymphocytic leukaemia is driven by antigen‑ independent cell‑ autonomous signalling. Nature 2012; 489(7415): 309– 312.

5. Packham G, Stevenson F. The role of the B‑ cell receptor in the pathogenesis of chronic lymphocytic leukaemia. Semin Cancer Biol 2010; 20(6): 391– 399.

6. Stevenson FK, Krysov S, Davies AJ et al. B‑ cell receptor signaling in chronic lymphocytic leukemia. Blood 2011; 118(16): 4313– 4320.

7. Agathangelidis A, Darzentas N, Hadzidimitriou A et al. Stereotyped B‑ cell receptors in one‑ third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012; 119(19): 4467– 4475.

8. Caligaris‑ Cappio F, Ghia P. Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 2008; 26(27): 4497– 4503.

9. Herve M, Xu K, Ng YS et al. Unmutated and mutated chronic lymphocytic leukemias derive from self‑ reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 2005; 115(6): 1636– 1643.

10. Krysov S, Potter KN, Mockridge CI et al. Surface IgM of CLL cells displays unusual glycans indicative of engagement of antigen in vivo. Blood 2010; 115(21): 4198– 4205.

11. Catera R, Silverman GJ, Hatzi K et al. Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 2008; 14(10– 12): 665– 674.

12. Chu CC, Catera R, Zhang L et al. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of origin. Blood 2010; 115(19): 3907– 3915.

13. Steininger C, Widhopf GF, Ghia EM et al. Recombinant antibodies encoded by IGHV1– 69 react with pUL32, a phosphoprotein of cytomegalovirus and B‑ cell superantigen. Blood 2012; 119(10): 2293– 2301.

14. Krysov S, Dias S, Paterson A et al. Surface IgM stimulation induces MEK1/ 2- dependent MYC expression in chronic lymphocytic leukemia cells. Blood 2012; 119(1): 170– 179.

15. Potter KN, Mockridge CI, Neville L et al. Structural and functional features of the B‑ cell receptor in IgG‑ positive chronic lymphocytic leukemia. Clin Cancer Res 2006; 12(6): 1672– 1679.

16. Quiroga MP, Balakrishnan K, Kurtova AV et al. B‑ cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009; 114(5): 1029– 1037.

17. Herishanu Y, Pérez‑ Galán P, Liu D et al. The lymph node microenvironment promotes B‑ cell receptor signaling, NF‑ kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117(2): 563– 574.

18. Cecconi D, Zamò A, Bianchi E et al. Signal transduction pathways of mantle cell lymphoma: a phosphoproteome‑based study. Proteomics 2008; 8(21): 4495– 4506.

19. Lenz G, Davis RE, Ngo VN et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008; 319(5870): 1676– 1679.

20. Guarini A, Chiaretti S, Tavolaro S et al. BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgV H unmutated chronic lymphocytic leukemia (CLL) cells. Blood 2008; 112(3): 782– 792.

21. Burger JA. Inhibiting B‑ cell receptor signaling pathways in chronic lymphocytic leukemia. Curr Hematol Malig Rep 2012; 7(1): 26– 33.

22. Burger JA. Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol 2012; 24(6): 643– 649.

23. Dal Porto JM, Gauld SB, Merrell KT et al. B cell antigen receptor signaling 101. Mol Immunol 2004; 41(6– 7): 599– 613.

24. Chen L, Widhopf G, Huynh L et al. Expression of ZAP‑ 70 is associated with increased B‑ cell receptor signaling in chronic lymphocytic leukemia. Blood 2002; 100(13): 4609– 4614.

25. Rassenti LZ, Huynh L, Toy TL et al. ZAP‑ 70 compared with immunoglobulin heavy‑chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351(9): 893– 901.

26. Deaglio S, Capobianco A, Bergui L et al. CD38 is a signaling molecule in B‑ cell chronic lymphocytic leukemia cells. Blood 2003; 102(6): 2146– 2155.

27. Deaglio S, Vaisitti T, Aydin S et al. CD38 and ZAP‑ 70 are functionally linked and mark CLL cells with high migratory potential. Blood 2007; 110(12): 4012– 4021.

28. Mraz M, Zent CS, Church AK et al. Bone marrow stromal cells protect lymphoma B‑ cells from rituximab‑induced apoptosis and targeting integrin α- 4- β- 1 (VLA‑ 4) with natalizumab can overcome this resistance. Br J Haematol 2011; 155(1): 53– 64.

29. Byrd JC, Furman RR, Coutre S et al. The Bruton’s Tyrosine Kinase (BTK) Inhibitor Ibrutinib (PCI‑ 32765) Promotes High Response Rate, Durable Remissions, and Is Tolerable in Treatment Naïve (TN) and Relapsed or Refractory (RR) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) Patients Including Patients with High‑Risk (HR) Disease: New and Updated Results of 116 Patients in a Phase Ib/ II Study Blood 2012;American Society of Hematology Annual Meeting, December. Atlanta, USA: abstract 189.

30. Gobessi S, Laurenti L, Longo PG et al. Inhibition of constitutive and BCR‑induced Syk activation downregulates Mcl‑ 1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 2009; 23(4): 686– 697.

31. Gobessi S, Laurenti L, Longo PG et al. ZAP‑ 70 enhances B‑ cell‑ receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 2007; 109(5): 2032– 2039.

32. Buchner M, Baer C, Prinz G et al. Spleen tyrosine kinase inhibition prevents chemokine‑  and integrin‑mediated stromal protective effects in chronic lymphocytic leukemia. Blood 2010; 115(22): 4497– 4506.

33. Weinblatt ME, Kavanaugh A, Burgos‑ Vargas R et al. Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve‑week, randomized, placebo‑ controlled trial. Arthritis Rheum 2008; 58(11): 3309– 3318.

34. Braselmann S, Taylor V, Zhao H et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex‑ mediated inflammation. J Pharmacol Exp Ther 2006; 319(3): 998– 1008.

35. Friedberg JW, Sharman J, Sweetenham J et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non‑Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115(13): 2578– 2585.

36. Ringshausen I, Schneller F, Bogner C et al. Constitutively activated phosphatidylinositol‑ 3 kinase (PI‑ 3K) is involved in the defect of apoptosis in B‑ CLL: association with protein kinase Cdelta. Blood 2002; 100(10): 3741– 3748.

37. Coutre SE, Byrd JC, Furman RR et al. Phase I study of CAL‑ 101, an isoform‑ selective inhibitor of phosphatidylinositol 3 kinase P110d, in patients with previously treated chronic lymphocytic leukemia. American Society of Clinical Oncology Meeting June 1– 15, Chicago, USA. J Clin Oncol 2011; 29 (Suppl 15): abstract 6631.

38. Hoellenriegel J, Meadows SA, Sivina M et al. The phosphoinositide 3‘- kinase delta inhibitor, CAL‑ 101, inhibits B‑ cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118(13): 3603– 3612.

39. Meadows SA, Vega F, Kashishian A et al. PI3KI inhibitor, GS‑ 1101 (CAL‑ 101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 2012; 119(8): 1897– 1900.

40. Castillo JJ, Furman M, Winer ES. CAL‑ 101: a phosphatidylinositol‑ 3- kinase p110– delta inhibitor for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 2012; 21(1): 15– 22.

41. Lannutti BJ, Meadows SA, Herman SE et al. CAL‑ 101, a p110delta selective phosphatidylinositol‑ 3- kinase inhibitor for the treatment of B‑ cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011; 117(2): 591– 594.

42. Coutre SE, Leonard JP, Furman RR et al. Combinations of the Selective Phosphatidylinositol 3-Kinase‑ Delta (PI3Kdelta) Inhibitor GS‑ 1101 (CAL‑ 101) with rituximab and/ or bendamustine are tolerable and highly active in patients with relapsed or refractory Chronic Lymphocytic Leukemia (CLL): Results from a phase I study American Society of Hematology Annual Meeting, December 2012. Atlanta, USA: abstract 191.

43. Burger JA, Keating MJ, Wierda WG et al. The Btk Inhibitor Ibrutinib (PCI‑ 32765) in combination with rituximab is well tolerated and displays profound activity in high‑risk Chronic Lymphocytic Leukemia (CLL) Patients. American Society of Hematology Annual Meeting, December 2012. Atlanta, USA: abstract 187.

44. Rawlings DJ, Saffran DC, Tsukada S et al. Mutation of unique region of Bruton‘s tyrosine kinase in immunodeficient XID mice. Science 1993; 261(5119): 358– 361.

45. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B‑ cell malignancy. Int Rev Immunol 2012; 31(2): 119– 132.

46. Honigberg LA, Smith AM, Sirisawad M et al. The Bruton tyrosine kinase inhibitor PCI‑ 32765 blocks B‑ cell activation and is efficacious in models of autoimmune disease and B‑ cell malignancy. Proc Natl Acad Sci U S A 2010; 107(29): 13075– 13080.

47. Davis RE, Ngo VN, Lenz G et al. Chronic active B‑ cell‑ receptor signalling in diffuse large B‑ cell lymphoma. Nature 2010; 463(7277): 88– 92.

48. Herman SE, Gordon AL, Hertlein E et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI‑ 32765. Blood 2011; 117(23): 6287– 6296.

49. Ponader S, Chen SS, Buggy JJ et al. The Bruton tyrosine kinase inhibitor PCI‑ 32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119(5): 1182– 1189.

50. Winer ES, Ingham RR, Castillo JJ. PCI‑ 32765: a novel Bruton‘s tyrosine kinase inhibitor for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 2012; 21(3): 355– 361.

51. Advani RH, Buggy JJ, Sharman JP et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI‑ 32765) has significant activity in patients with relapsed/ refractory B‑ cell malignancies. J Clin Oncol 2012; 31(1): 88– 94.

52. Wang L, Martin P, Blum KA. The Bruton’s tyrosine kinase inhibitor PCI‑ 32765 is highly active as single‑agent therapy in previously‑treated Mantle Cell Lymphoma (MCL): Preliminary results of a Phase II trial. American Society of Hematology Annual Meeting, December 2011. San Diego, USA: abstract 442.

53. Wilson WH, Gerecitano JF, Goy A et al. The Bruton‘s tyrosine kinase (BTK) Inhibitor, Ibrutinib (PCI‑ 32765), Has Preferential Activity in the ABC subtype of relapsed/ refractory de novo diffuse large B‑ Cell Lymphoma (DLBCL): Interim Results of a Multicenter, Open‑ Label, Phase 2 Study. American Society of Hematology Annual Meeting, December 2012. Atlanta, USA: abstract 686.

54. Wiestner A. Emerging role of kinase‑ targeted strategies in chronic lymphocytic leukemia. Blood 2012; 120(24): 4684– 4691.

55. Woyach JA, Johnson AJ, Byrd JC. The B‑ cell receptor signaling pathway as a therapeutic target in CLL. Blood 2012; 120(6): 1175– 1184.

56. Flinn IW. B‑ cell receptor inhibitors in chronic lymphocytic leukemia. Clin Adv Hematol Oncol 2011; 9(8): 605– 606.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#